The Diminishing Amateur Radio QSO

I have always gravitated toward DXing and “weak signal” work. I am a very competitive DXer, sometimes contester, and like to push the limits of technology and skill to make difficult QSOs on challenging bands or using challenging propagation modes. I have 297 DXCC entities worked on 160 meters, 125 on 6 meters, 84 on 2 meters. I worked over 600 unique stations on 2 meter EME between the late 1980s and the early 2000s, all on CW.

What is a QSO? It is (or should I say was?) a two-way communication between two amateur radio stations. If we look back at the original definition of the Q signal, QSO means “I can communicate with ______”, where the blank would be the call sign or other identification of a particular station. It made sense to use this Q signal to mean “I have communicated with ______”. They key word is communicate. We are, after all, supposed to be communicators.

So how do we define communication? We had the concept of a “minimum” QSO for many decades. I am speaking here mainly about VHF and up “weak signal” QSOs. Our forefathers, in their wisdom, no doubt in recognition of the fact that we are communicators, realized some standard had to be set on what, at minimum over-the-air information exchange would be acceptable for a QSO to be considered countable for awards, etc. The standard they came up with was that both stations had to copy full call signs, signal report or other piece of information (such as a grid square), and acknowledgment that those things had been received. We had a clear standard definition of the minimum acceptable amount of communication which needed to take place over the air to claim a QSO had taken place. In all the years that I worked meteor scatter and EME on 2 meters and above, I never logged a QSO where I did not copy this information entirely, including both my call sign and that of the other station. Although in any competitive activity we can assume there are a few who bend the rules, I never had the sense that most operators were anything but above board in adhering to the minimum QSO standards. One could find the definition and standards for a minimum QSO widely published.

All of that changed when a new crop of digital modes came on the scene in the early 2000s. First we were introduced to the concept of “deep search”, wherein only about half of the calling station’s call sign need by received over the air for the software to claim a decode. The remaining portion could be obtained by finding the best match in a database of known active call signs stored on the computer of the receiving station. There was no community discussion or voting on this beforehand. One man made a decision that changed everything. The software with this capability was developed and released. It was immediately popular with a multitude of newcomers to EME who found they could now partake of the activity with much smaller stations, and by many of the old guard who were hungry for more QSOs. There were some, myself included, who felt deep search violated the minimum QSO standard and that such QSOs were incomplete, not valid.

Aside from ethical questions, we may ask how reliable is deep search? What if there are several similar call signs in the database, for example? What if the call sign we want is not in the database but a similar one is? I have conducted tests on a number of occasions. To use one as an example, I listened during the 6 meter EME DXpedition VK9CGJ. For some time I listened without deep search enabled. There were no decodes. I then enabled deep search but did not have VK9CGJ or any similar call sign in my database. There were no decodes. Then I added W7GJ to the database and immediately started seeing decodes of W7GJ calling CQ. Then I saw a decode of W7GJ sending me a signal report. This wasn’t possible, as W7GJ was the operator at VK9CGJ. Clearly deep search had misidentified the station because a partial copy matched part of this call sign what was in its database. I Where it got my call sign from I don’t know! I then entered VK9CGJ into the database and started seeing decodes claiming VK9CGJ was answering me and sending a signal report. But wait, it gets better. The signal report wasn’t even in the EME format. In other words, all of these were false decodes. Not just false decodes of a station calling CQ, but false decodes containing QSO information! I had not transmitted at all, so no one should have been calling me. If in fact he was calling me, it could only mean that a false decode had occurred on his end. I have seen similar results in other tests. Similar tests have been carried out by others, with similar results. To me it is very clear deep search makes mistakes. How is it that so many people accept QSOs made with this feature as valid, when the full call sign of the calling station has not been copied over the air? Perhaps almost as disturbing, I have received a number of QSL cards for 2 meter EME QSOs during a period of time when I didn’t even have a 2 meter station. Were these QSOs manufactured by the software?

Later we were introduced to modes which used a single tone (steady carrier) to “communicate” part of the QSO such as signal reports and acknowledgment. Since only a very brief instant of tone recognition was required for the software to claim a decode, this was obviously prone to false positives.

Lately we have another newcomer in the QSO shortcut features. AP (a priori) decoding uses already known information as a QSO progresses to augment decoding. Unfortunately it starts out knowing the receiving station’s own call sign, so this doesn’t need to be copied over the air. The decoder assumes the receiving station’s call sign is in the message unless it gets enough over-the-air evidence to prove otherwise or introduce significant doubt. At this time there would seem to be insufficient evidence on the reliability of this, but I have seen a number of people asking about stations calling them “in the blind” when they haven’t yet transmitted. One has to wonder if these are cases of the decoder assuming their call sign was in the message and then failing to find sufficient evidence to the contrary in a partially received message. Furthermore, on one very popular mode which uses AP decoding, everyone is strongly encouraged never to call someone on the frequency they are transmitting on, but instead to use split frequency. This further muddies the waters. If the usual operating convention were to call on the frequency of the station you want to work, that in itself would offer some clue (though not by any means conclusive) that you are in fact calling that station. But if you stations are calling on random frequencies, this clue is lost. It’s enough to make one wonder if this insistence on using split is just for further obfuscation to hide the truth about AP decoding.

AP decoding with split frequency is ludicrous! Suppose I were to call CQ on CW or SSB. I hear no callers on my frequency but I tune further up the band and hear someone give their call sign along with the some letters that might fit mine, such as “N1” and “U”. It would be ridiculous for me to assume they were calling me. Yet this is exactly what AP decoding does.

I find it very sad that all of this has been accepted with relatively few dissenters. I fail to understand how users of these modes, let alone organizations which issue operating achievement awards can consider such QSOs to be valid. But we are in a new world. For the most part, the definition of a minimum QSO has disappeared, especially the part which talked about full call signs having to be received over the air. Many operators clearly know what these features do and use them anyway. Given the obvious lack of understanding of basic concepts by many, however, it is likely a good number do not understand the shortcuts that are being taken by the decoder. Add to that the fact that we now have a new generation of operators who came into the game in the digital age and know nothing of minimum QSO standards as they existed before. We can clearly see this situation is long since irreversible. The bottom line is that today’s standard for a minimum QSO is closer to mutual detection of signal than a set quantity of over-the-air information exchange. Where will it stop? Are we headed for “QSOs” where only a hint of signal from the other station has been detected but no actual communication has taken place?

Digital modes using these features have largely taken over many aspects of DXing. EME went almost entirely to digital modes many years ago. More recently 6 meter DXing went almost completely digital. HF DXing is taking a strong turn in the same direction, as is VHF contesting. Proponents of digital modes say those who don’t like them should simply continue to use CW or SSB. That sounds reasonable on the face of it, but experience proves there is not enough activity on these modes to sustain a DXer, while at the same time many of the people busily working digital modes say they would rather be doing traditional modes or that they view the digital modes as a necessary evil.

There is perhaps truth to be found in the latter. Long ago EME reached a point where it was not worthwhile to build or maintain a station for the small amount of remaining CW activity. Now the same is becoming true for many other aspects of DXing. The sad fact of the matter is one either accepts the digital modes and the new definition of a minimum QSO or one leaves the DXing pursuit. One cannot be competitive without using the digital modes and most likely cannot find enough activity to justify having a capable station. That is the bottom line. I have been wrestling with this for some time. I have great difficulty taking any satisfaction from QSOs made on digital modes that shortcut the information exchange. Yet there seems to be no other choice if I want to use my VHF/UHF equipment for more than an elaborate home dust collection system.

It isn’t just digital modes that are changing the nature of the QSO. Nearly every day I see people talking about checking the online log of some DXpedition to see if they had a QSO because they didn’t hear enough over the air to know if they made it into the log. How sad. If I don’t hear enough over the air to know the QSO was good, then obviously it was not complete on my end! It doesn’t matter if I am in the DX station’s log or not — the QSO was not valid. But I am clearly in a minority with this opinion.

It seems we have moved away from being communicators, taking pride in building and operating stations capable of real communication. Instead we now look to any kind of mutual signal detection as a basis for claiming a “QSO” and/or award credits. It’s all about the glory with none of the substance. I am not the only one who thinks this is wrong. Many avid DXers having given up and left the hobby altogether. Others barely hang on, wondering if it is really worth it any more.

Leave a Reply