This is one of a series of “Notes” I published on Facebook. Since Facebook has discontinued the Notes feature, I am publishing that series here on my blog.
Not long ago I wrote a primer on VHF and UHF DXing. In it I outlined what one could expect using a 50 to 100 watt station and 8 element or larger yagi on the two meter band. Since then I have been operating with 25 watts to a seven element yagi with interesting results. This isn’t even an optimized seven element antenna; it is on a very short boom for this number of elements, about six feet long. Performance is about on par with most four or five element yagis. I would like to share my experience.
I operated the June VHF Contest with the little yagi at a height of 27 feet, just below my six meter yagi. I had a very high noise level and the yagi exhibited minimal directivity. I would later discover this was caused by proximity to the much larger six meter yagi. I was able to work five states: Maine, New Hampshire, Massachusetts, Vermont, and Connecticut. The longest distance worked was 345 miles. Tropo was typical of “every day” conditions, nothing special. The weather was somewhat windy across New England, which prevents significant tropospheric propagation enhancement over average daily levels.
Not long after that contest, I moved the yagi to the top of my main tower at 105 feet above ground. It is still near a large antenna, in this case being just five feet above my TH-11DX five band HF beam. Nevertheless, reception was much less affected by local noise and the little two meter yagi exhibited better directivity, indicating it was not as disturbed by its neighboring antenna. In the CQ VHF contest I was able to work most of the New England states again, with the longest distance again being 345 miles. That is about the limit for this size antenna and 25 watts without some serious tropospheric propagation enhancement or other propagation mechanisms. The notable difference is that now I was hearing stations out to 450 miles, which did not happen with the antenna in its former location.
In July I caught two sporadic E openings, working Kentucky, Tennessee, South Carolina, and Georgia with best distance being 1200 miles. No one can say for certain, but given the distances and nature of sporadic E it is quite likely I could have worked all of the stations with the antenna at much lower height.
Taking advantage of the Perseids meteor shower, special operating techniques and the FSK441 fast digital mode designed specifically for VHF meteor scatter I was able two work two more states: Virginia and Wisconsin, with best distance 1013 miles. This is not an easy game with a station of this small size, but I proved it can be done if one has patience and persistence. One of the hardest things is getting stations to try to work you. Most are afraid they won’t be able to hear such a low power signal, and random operating (eg. calling CQ vs. having a pre-arranged schedule with a particular station) is not going to work at this power level. My antenna was probably too high for optimum results on meteor scatter. I might have done better with stations in the 700 to 1100 mile range had it been lower, where it could offer a bit more relatively high angle radiation.
In two months of mostly casual operation, being aware and mindful of VHF propagation I was able to work 11 states on two meters. Given a couple of years, a bit of luck with propagation and some effort, another 11 or 12 states are definitely within reach. If sporadic E were to be very cooperative or there were to be a massive aurora which spawned auroral E, another three or four states are possible. I believe my experience demonstrates that VHF DX is not beyond the reach of modest stations. My results were probably better than those of a newcomer to the game, since a previous 20 year period of working two meters has made me a savvy operator, very aware of propagation mechanisms and how to spot opportunities. Propagation awareness is critical for success on VHF.
There was no aurora during this period, but contacts to at least 900 miles on that mode are definitely possible with a station of this size. However, CW is a requirement for aurora.
It should be noted that graduating to the 100-150 watt class, easily within reach of most with a modern transceiver or solid state “brick” amplifier, will greatly enhance results. I would recommend this to anyone wanting to be serious about VHF “DXing”, though obviously it makes sense to start out with whatever power one has and upgrade once the desire for better results sets in. A larger antenna is always better, but even a very short yagi can provide interesting results. If erecting a long yagi is not practical, consider two or four short yagis properly stacked and phased. It’s not as difficult as it may sound, and you will find experienced VHF operators happy to assist.
This is one of a series of “Notes” I published on Facebook. Since Facebook has discontinued the Notes feature, I am publishing that series here on my blog.
I have recently written about what can be done on the two meter amateur band using modes other than FM. In a recent VHF contest my 25 watt station using a very small yagi mounted in a poor location at 27 feet above ground was able to make contacts to a distance of 350 miles. One should not expect ragchew quality with such a station at that distance, but short exchanges are possible. Reliable ragchew or conversational range with a small station on SSB will be 100 to 200 miles depending on numerous factors. The small station can expect occasional contacts to 1000 miles or more if the operator is alert and understands VHF propagation. As station power and antenna gain/height increase, so does typical working range. Far greater range may be had with a small station operating portable from a mountaintop.
A few of us hope to promote greater local activity in this interesting facet of amateur radio. I thought it would be useful to talk a little more about operating on the low end of the two meter band using SSB, CW, and digital modes. It is very different from FM and repeaters.
This is not like the HF bands which enjoy high activity and constant or frequent propagation. Beyond the normal working range of 100 to 500 miles depending on station capability, propagation is very infrequent and sporadic. The band can go from closed to open and vice versa in seconds. Propagation footprints can be very small with one station making DX contacts 1200 miles out while his neighbor ten miles down the road hears nothing but the locals. Furthermore, highly directional antennas are the norm. This makes it easy to miss signals coming from any direction other than where your antenna is currently aimed. Except in a VHF contest or when the band is known to be open for long distance communication, tuning around looking for signals is generally pointless. So how do we find someone to talk to? How do we prevent our extended local conversations from thwarting our neighbor’s attempts to make calls or long distance contacts if the band suddenly opens up? These are important considerations. The answer lies in understanding proper use of a calling frequency.
The established SSB and CW calling frequency on two meters is 144.200 MHz. This is where virtually every station who wants to call CQ (except in major band openings or contests) will go to do so. This is where you want to call CQ and also where you want to monitor for activity. Why do we call it a calling frequency? Because it should be used for making calls, but not for conversations or extended operating. If we all use the calling frequency considerately in the manner it was intended, we can maximize fun and enjoyment for everyone. If you establish contact with another station and want to exchange more than a signal report and a couple of brief remarks, proper etiquette is to move off the calling frequency with the station you are in contact with. This leaves the calling frequency open for others to make calls and for your neighbors to monitor for unusual band activity including DX opportunities. FM should not be used here, as it has the potential to seriously interfere with SSB and CW operations that you cannot hear on an FM radio.
How long of an exchange is considered acceptable on the calling frequency before moving off? How far off the calling frequency should you move for an extended QSO? These are good questions! I like to QSY off the calling frequency if I am in contact with another station for more than a minute or two. As an experienced two meter operator and DXer, I suggest this as a reasonable rule of thumb. As for how far to move off frequency, that is a little more complicated. Bear in mind that your signal can be extremely strong with your “local” neighbors – those within 50 miles or so of you, perhaps more with hilltop locations or high power. Not every receiver can handle such strong signals without some overloading. Meanwhile, signals from outside the local area that your neighbors may be trying to hear are likely to be very weak. With those considerations in mind, to minimize the potential for interfering with neighbors I suggest moving at least 20 kilohertz away from 144.200. More may be even better.
There are exceptions. Occasionally (OK, rarely) the band may suddenly open and permit even small and moderately equipped stations to make contacts to many hundreds of miles. Under these conditions the rules of etiquette change to permit everyone a reasonable chance of making DX contacts. When the band is really open, there may be many stations CQing and making brief contacts, taking advantage of the DX opportunity while it exists. Chances are operators at the other end of the propagation will be tuning around the band to find stations to work, but they probably won’t tune a huge portion of the band. In cases where the band is obviously open and activity is high, it is still considered impolite to hog 144.200 for extended periods. “Running” a few QSOs there is OK. Beyond that, try moving off a few kilohertz and calling CQ; perhaps up or down five if this is an opening where most are running SSB, up or down two if it is mostly CW (such as would be the case with aurora propagation). If it is really crowded, move off to the first clear frequency you find above or below the calling frequency.
Generally speaking, digital modes are not used on 144.200. There are special calling frequencies for certain types of digital mode operating. For example, 144.140 is used for calling using the FSK441 mode for meteor scatter communication. There are highly specialized operating techniques and special etiquette for this, which is beyond the intended scope of this beginner article.
Let’s get back to everyday operating for a moment. From our area, most signals on an everyday basis are going to be either local (try pointing antennas toward the Bangor area, but look around with the antenna too, so those in outlying areas have a chance to hear you) or from the southwest direction. There is a “VHF alley” (sometimes called “kilowatt alley”) of activity down the coast… southern Maine, southern New Hampshire, Massachusetts, Connecticut, Rhode Island, eastern New York, New Jersey, and so on. This is where most of the non-local signals come from except during long range band openings. Southwest is a good direction to “park” your antenna for listening. Occasionally you may get someone from the west or the east (Canadian Maritime provinces), or even north. Put out a CQ in those other directions from time to time. You may make someone’s day, as they are in areas often overlooked!
Activity tends to concentrate in the evenings. Try 1900 to 2100 local time. Not only is this a convenient time for many people, but tropo conditions often peak up a little around that time, permitting better signals from moderate distances. Sometimes there is a good peak in conditions around dawn and shortly thereafter. The problem with that is lack of activity. There is a group well to our southwest that gets on 144.205 in the mornings. Some of those stations are occasionally joined or worked by stations in our area. I believe some of them also monitor the appropriate ON4KST chat page in the mornings. Speaking of which, the chat can be a good place to find people a few hundred miles away who may be interested in trying to make contact with you on two meters! Give it a try. People there won’t bite, but I can’t promise they won’t growl about poor propagation!
Lastly, a final word on calling frequency etiquette. If you find others ragchewing on the calling frequency, please consider asking Lastly, a final word on calling frequency etiquette. If you find others ragchewing on the calling frequency, please consider asking very politely and tactfully if they could move off. Many do not realize or forget that tying up the frequency with extended conversations can rob other stations of the opportunity for rare and exciting contacts or just the chance to put out a CQ call. Some may feel that talking for long periods of time there is a good way to attract attention. It may be! But, it also gets in the way of others enjoying the band. Please, let’s all consider each other’s enjoyment of this very different and exciting facet of our great hobby. See you on the low end of two meters! (Note as of July 8, 2016: I am not really active as of yet; I need to finish antenna projects before I concentrate on operating and trying to encourage more activity. Give me a few weeks.)
This is one of a series of “Notes” I published on Facebook. Since Facebook has discontinued the Notes feature, I am publishing that series here on my blog.
Most new hams these days start out on VHF FM and repeaters. Radios are inexpensive and simple to operate. Antennas are small and readily available or easy to build if one is so inclined. Many may never experience any other aspect of ham radio. Those who have entered the fraternity partly or wholly for the hobby aspects of it may get on the HF bands where contacts around the world are an everyday occurrence. Few will ever realize or experience the potential of VHF and UHF using non-FM modes. This ‘other’ VHF/UHF may be one of the best kept secrets in ham radio today.
In Maine, VHF or UHF FM will allow one to communicate up to 50 miles or so between base stations, maybe more if one or both stations are located on hilltops. Operating through repeaters this range is doubled. A few repeaters, especially those located on higher summits, may allow communication between stations up to 150 miles apart. Occasionally, when atmospheric conditions are favorable, the range may be extended. There are linked repeater networks and repeaters linked via the internet which allow long range communication but such contacts are not generally useful for awards or contests and for many, simply don’t provide the same thrill as a radio-to-radio contact without any active devices (repeater, internet, satellite) assisting. There is something inherently fascinating, something often uniquely rewarding, in using natural phenomena to get one’s radio signal to a far-off place.
When we start using modes other than FM – such as SSB, CW and a host of digital modes that work through SSB transceivers – we enter a whole new world on VHF and UHF. This is a world known as VHF “weak signal” communication, but the term can be misleading. Sure, sometimes signals are weak but they can also be extraordinarily strong. Although I am not familiar with the etymology of the term, it may refer to the fact that the non-FM modulation modes can make weaker signals usable where FM would fail. So just what can we do with VHF and UHF once we look beyond FM? Once we get into the VHF range we start to find other methods of signal propagation over relatively long distances; ones that are not useful on the HF bands. The troposphere (the lower region of Earth’s atmosphere which is largely responsible for our weather) has a significant influence, and certain less common ionospheric phenomena come into play. VHF and UHF weak signal communication is almost always done using directional or beam antennas, the yagi being the most popular. Unlike FM and repeaters, horizontal polarization is used. Vertical polarization may have been chosen for FM work to simplify hand held and mobile antenna setups, or because it is easier to achieve omni-directional patterns. Horizontal polarization has certain advantages, among them less susceptibility to many types of man made noise; hence it is a good choice where we may be wanting to copy signals that are not strong. Horizontally polarized beam antennas are also easier to mount without the (usually vertical) support mast degrading performance of the antenna. What is possible on VHF and UHF “weak signal” is influenced by regional weather, terrain and other factors. As a result, this article focuses on what to expect if you live in the Maine Highlands region. This is based on more than 20 years experience. For purposes of this article, the assumption is made that your station is located in a moderate valley, as most of us are. If you happen to live on a hill, you will see better results.
Let’s look at the 6 meter band first. A typical 50 to 100 watt transceiver and a small beam antenna (say, three to five elements on a six to 15 foot boom) will allow contacts to well over 100 miles most of the time. Occasionally this range will be extended by conditions in the troposphere which result in greater signal bending beyond the normal radio horizon. During late Spring through mid summer, the E layer of the ionosphere often becomes ionized enough to reflect 6 meter signals back to Earth. This results in signals propagating over distances to 1400 miles on a single hop, often with excellent signal strength. The band may become full of signals and large numbers of contacts are possible. Less frequent but not uncommon is multi-hop Es propagation. There are usually several good openings from our area to Europe and to the west coast every year during this period. There is a secondary Es season in December-January but more than one hop is relatively uncommon. Aurora can easily reflect 6 meter signals. This is like playing billiards – the signal reflects off the aurora. Typically antennas will be pointed somewhat east of north to work stations to our east, due north to work stations north or south of us, and somewhat west of north to work stations to our west. Contacts out to 1000 miles are common, but greater distances to 1300 miles are occasionally possible. Signals propagated by this method have marked distortion. Single sideband voice may sound very raspy or like a loud whisper. CW signals usually exhibit a buzz or hiss sound rather than a clear tone. Sustained aurora may lead to patches of Es forming and a conversion to auroral Es propagation, wherein the distortion goes away. Meteor scatter, using specialized operating techniques, allows contacts to distances of 1300 miles almost every day of the year. Meteor scatter is of no use for rag chewing but callsigns and signal reports can easily be exchanged. During the peak of intense sunspot cycles, propagation over great distances (even worldwide) is possible using the ionospheric F2 layer, as on the HF bands. There was very little 6 meter F2 propagation during solar cycle 24 due to its relatively weak maximum.
What about the 2 meter band? Using 50 to 100 watts and a multi-element yagi (8 or more elements on a boom ranging from 10 to over 30 feet in length), contacts to 200 miles are possible most of the time. Being in a particularly deep valley will reduce range. Tropospheric enhancement is more common than at lower frequencies, and will at times allow contacts to 300 or even 400 miles. While far less common than at 6 meters, Es propagation does occur on the 2 meter band, usually in June, July or early August. Es contacts to 1300 miles can be made, often with extremely strong signals. In one such opening I worked a station in North Carolina who was running a two watt portable SSB transceiver with its built in telescoping whip antenna. He was blasting in just like a local station! Double hop Es has been reported on a few occasions but is rare. I had one contact at a distance of 1700 miles on double hop Es during my years on 2 meters. Aurora also works well at 2 meters, allowing contacts to 1000 miles and occasionally more. Distortion is even more pronounced at this frequency, usually rendering SSB unintelligible. CW is definitely the preferred mode for 2 meter aurora contacts. Using specialized techniques, meteor scatter works well but is not as easy as it is at 6 meters.
At 135cm, tropospheric propagation is slightly better than at 2 meters. Aurora still works reasonably well. Meteor scatter is possible but quite a bit more challenging. Es is extraordinarily rare but does occur on the order of once every ten years or so! What a thrill it would be to catch an opening like that! I never did.
At 70cm, tropo works quite well. Aurora is somewhat less common than at lower frequencies but can work well during the more intense events. Es does not occur at all, and while meteor scatter is possible it represents a rather extreme challenge.
The bands above 70m are barely used at all in Maine except for a very small number of avid VHF/UHF and microwave contesters. There is so little activity that getting on these bands rarely is worthwhile unless one is an avid contester, has some specific goal in mind, or wishes to explore the fascinating world of microwave propagation.
With high power and larger antennas, other propagation modes come into play. EME, or Earth-Moon-Earth, allows communication with any point on Earth by bouncing signals off the lunar surface. I worked all 50 states and more than 80 countries on 2 meter EME back in the 1980s and 90s when this was all done on CW. One fascinating aspect of EME is that it takes approximately two and a half seconds for a signal to traverse the half million mile round trip to the moon and back. You can actually make a short transmission and then hear your own signal come back from the moon! Tropospheric scatter often allows communication to 1000 miles or more on 6 and 2 meters for stations with a kilowatt of power and high gain antennas (7 element yagi or more on 6 meters, array of four or more long yagis on 2 meters). When I had 1500 watts and a 96 element stacked quad antenna array on 2 meters, I could often work stations up to 1000 miles distant using this brute force propagation mechanism. There is something satisfying about working a station 1000 miles away on a band “everyone knows is dead”. High power and large antennas also extend the range of propagation modes previously discussed. On 6 meter Es I have worked as far as Bahrain, Brazil, Hawaii, and Japan. I have more than 120 countries on 6 meters, all but one or two of them by way of Es propagation. It can be done.
There are several popular VHF/UHF contests. Contesting on these bands is very different from contesting on HF where there are many loud signals all the time. On VHF and UHF you may tune up and down the band(s) for an hour without hearing a signal. When you do find one, you may want to “run the bands” with that station, making arrangements to go from band to band to band, working the station on as many bands as you can. It is both fun and challenging. My first experience with VHF contesting came shortly after I purchased my first 2 meter all mode rig at a hamfest in the 1980s. I had not yet put up a horizontal antenna. I had 90 watts to a quarter wave ground plane I had been using for local FM work. Despite the incorrect polarization making my 90 watts sound more like one watt, I was able to eke out contacts with stations 15o miles away. This opened my eyes to the world of weak signal work and made me want more. It wasn’t long before I made station improvements!
In fact, any operating on VHF/UHF weak signal is different than HF. It’s usually not as easy as turning on a radio and making dozens of contacts. It takes time and patience. Knowledge of VHF/UHF propagation helps tremendously, as you will know when and where to look. On the other hand, the rewards can be great. It is fun to make contacts most hams would believe impossible. There is often a good deal more thrill and satisfaction in making a contact using a rare propagation mode that one must wait for, as opposed to being able to turn on a radio and do it virtually any time.
Cover photo: Temporary VHF/UHF antennas at N1BUG, shortly after a move in 1999. Bottom to top: 13 element horizontal yagi for 2 meters (partially visible); 5 element vertical yagi for 2 meters; 11 element horizontal yagi for 135cm (222 MHz); 22 element horizontal yagi for 70cm (432 MHz) with receive preamp covered by a sandwich bag! The 432 MHz yagi, with approximately 600 watts of power and the preamp shown was enough to work a few dozen stations and all continents on EME, using CW! These antennas were on an azimuth/elevation mount so they could be pointed anywhere in the sky, not just toward the horizon.
An eight-yagi 432 MHz EME array at N1BUG. This array used open wire phasing lines instead of coax to keep losses to a minimum.