Category Archives: DX

Big Tropo Opening!

I had long since given up believing I would ever see a VHF/UHF tropo opening to the midwest. Tropo in this part of Maine is exceedingly rare. It seems like everyone gets more of it than we do. Southern New England sees several good tropo events every year, both to the midwest and down the coast. Our Canadian neighbors to the east and southeast get openings down the coast a few times a year. We, however, see many years with nothing beyond every day “brute force” troposcatter range of roughly 500 miles. Since I got on VHF in 1986 I have seen no more than five tropo events that reached beyond that. Every one of them was down the coast to extreme eastern Virginia and possibly extreme eastern North Carolina. Without looking back through paper logs I am uncertain what my best tropo DX was, but I believe it was under or around 800 miles. I am positive there was nothing over 850 miles.

The event that occurred on September 2, 2023 was quite a shock! On the afternoon of September 1 I had checked 10 GHz and discovered N1JEZ beacon, 195 miles away, was in weakly as it had been for several days back in July. I didn’t think much of it at the time, but as I continued to monitor it got stronger and I realized this was a real tropo event for short distances on microwaves. There was nothing on VHF however. Here is an audio recording of N1JEZ/b on 10 GHz. This was not at the peak time but solid copy at 10 to 15 dB out of the noise. In the center section of the clip I switched in the audio peak filter to enhance it a bit more.

The situation while N1JEZ/b on 10 GHz was solid copy. Nothing evident in my area and I had no sign of DX on VHF or UHF.

Curious to see what would happen, I left the receiver monitoring when I went to bed. I was awakened at 3:00 in the morning by a screaming loud N1JEZ beacon. By the time I got myself functioning and into the shack it had already dropped in strength significantly, but a look at the APRS propagation map showed very strong tropo to my west and some paths passing by me to my northwest. I began monitoring and calling on 2 meter FT8. I could hardly believe it when I started decoding WB9ENB in EN71, a distance of over 800 miles. I soon worked him followed by KD2CDV in FN03 at 503 miles. Wow! Tropo to the midwest! This was a first for me!

APRS map of the tropo opening shortly before I started hearing VHF DX. I am in the orange area about 70 miles east of the purple area extending across northwestern Maine.

Not long after that I worked W9FF in EN40tf, a distance of 1136 miles! Not only was I working the midwest, but I had just smashed by personal best tropo distance record by a few hundred miles! W9FF was so strong that I asked him on ON4KST chat if he could possibly work me on CW to fulfill a long time dream of making a tropo contact at that distance on a human decodable mode. Roger kindly agreed to take time out from working others to do so and we soon had a CW QSO with 559 reports exchanged both ways. I am eternally grateful for this kindness. That was a huge thrill for me! Here is an audio recording of W9FF on CW.

After a few more moderate distance QSOs on 144 and 222 MHz, VA3IKE tried me on 432. I only have 25 watts on that band and it was not getting the job done. We moved to Q65 mode to dig deeper into the noise and soon had completed a QSO of 716 miles. I thought that was pretty amazing under the circumstances. Little did I know what was about to happen.

After completing a 432 FT8 QSO with VE3DS, N0PB called me. I thought there was no way he could be hearing me at 1239 miles but I responded and it was a very easy FT8 QSO. Incredible! 1239 miles on 432 with just 25 watts! Phil was very audible in the speaker and would have been an easy CW or SSB QSO if I had more power. This is one of the very few digital QSOs that will be a life long memory. In general, I don’t get too excited about them, but this was special.

Around the peak of the VHF/UHF opening, the purple area was now over me. This was shortly after that incredible 432 QSO with N0PB.

Other notables were AA9MY, 1088 miles on 222, W9FF 1136 miles on 432 (Q65), W9VHF 854 miles on 432 and 144, VA3IKE 716 miles on 144, and N0PB 1239 miles on 144. What an amazing event for a tropo-deprived Mainer. Here is the list of QSOs for the opening.

This was, as is usually the case, an all digital event except for the one QSO with W9FF. I spent some time calling CQ on 144 and 222 CW but had no takers. I did not hear anyone else on CW or SSB except for my VE9 friends at the end of the opening.

CY0S Worked With Simple QRP Rig

I have been trying to find ways to stay active in ham radio during challenging times. Lately I have been experimenting with simple homebrew 40 meter CW rigs. My fist try was a Pixie kit. The Pixie is a true minimalist transceiver with very few parts. I had one years ago and thought it worked pretty well, but this latest one I got didn’t seem so great. Perhaps the circuit has changed or I have! It suffered terrible BCI (broadcast interference) from strong stations in the medium wave band. This was mostly cured by adding a 40 meter band pass filter. I tried to add a VXO (variable crystal oscillator) to get some frequency agility as I had done with my old Pixie 20 years ago but after weeks of playing around I gave up. This one did not want to move more than a kilohertz or so (the old one had no problem going 7 kHz), and the receive-transmit frequency offset changed as the VXO was tuned through its limited range.

The kit built Pixie with band pass filter

I soon gave up on the kit built Pixie and tried making one from scratch. I had all the parts on hand so why not? I experimented with adding audio filter stages and learned quite a bit in the process, but the pure homebrew version also didn’t want to move very far with a VXO and had the same problem with receive-transmit offset. I soon abandoned it too.

Homebrew Pixie with audio filter stage

My friend Tom, KN4RRQ had built a two transistor transmittter following a design by VK3YE but was having problems getting good power out of it. It was supposed to do about five watts on 12 volts and 20 watts on 30 volts, but it wasn’t. It uses a BD139 transistor oscillator followed by a IRF510 or IRF530 amplifier. Tom sent me a few BD139s since I didn’t have any and I threw one together to see what I could get it to do. I had the same problem with very low output (about half a watt) until I added a bias circuit which brought it close to five watts. Harmonic levels were too high for my liking with the original low pass filter so I made the second stage of that filter a 20 meter trap which got that under control. Modifying the filter must have changed the load seen by the FET. Output was up to 8 watts operating on 12.5 volts! I put it on the air, using my FT-2000 to receive and my CQ was answered by Wolf, IN3TWX. I knew him from my 2 meter EME days so that was fun! Wolf gave me a 578 report with this little rig. It does have a bit of chirp.

The 8W20W transmitter as set up for the IN3TWX QSO

I was still looking for a QRP transceiver with frequency agility. I was able to save a few pennies and buy a DC40B transceiver kit and audio filter kit from Pacific Antenna. It put out a little over two watts when operated at 12.5 volts on a battery. I built a synthesized VFO using an Arduino nano and Si5351A synthesizer module. I started with a design by W3PM from QEX July/August 2015 and made a few minor changes. I added a low pass filter and post-amp to bring the level up enough to drive the DC40B. I had a few trials getting the VFO to properly drive the rig but eventually got it working well. Describing the rig in detail is not the focus of this post.

On the morning of July 29 I was calling CQ with the DC40BV (my nomenclature for the DC40B with VFO) on 7021.5 kHz when I heard the CY0S Sable Island DXpedition begin calling CQ on 7023 listening up (working split frequency). I was able to hear them because the filtering on this little rig is OK but surly not great. I wondered if I could manage to work them with this little rig? The receiver is direct conversion. I have it configured for a positive transmit offset since I normally prefer to listen on the low side of zero beat but of course being a D-C receiver it works equally well on the upper side of zero beat. If I tuned up to 7024 or so I would be able to hear CY0S and be transmitting one kilohertz or so above them, in about the right place for their split since they had just started up and there was no pileup. I hastily dialed up, actually going a bit higher than that but I could still hear them due to the somewhat wide audio filter. My first call went unanswered and they called CQ again, but my second call got them! I worked CY0S with a 2 watt kit/homebrew transceiver with direct conversion receiver! If there had been a pileup the QRM would have killed my ability to hear CY0S since I would be listening right in the middle of it, but I was in the right place at the right time when they had just started up and had very few callers. A 400 mile QSO is no great feat but it was fun working a semi-rare DXCC entity with such a simple and unlikely setup!

The DC40BV immediately after my CY0S QSO
Inside view of the DC40BV rig. I am still making a few minor changes and have some more tweaking of the VFO code and capabilities to do.

I was already thinking about having the ability to toggle the receive-transmit offset to plus or minus 500 Hz (my preferred pitch for listening to CW) because with a direct conversion receiver listening on the opposite side of zero beat can be helpful in avoiding QRM. But this QSO got me thinking. Perhaps I will try to make the offset completely variable, so I can go either side of zero beat and even have fully configurable split frequency capability. That will test my limited Arduino coding capabilities, but I think I can get it done with some trial and error.

2021 Antenna Rebuild: The Complete Story, More or Less

I have a passion for radio, but it goes deeper than a hobby for me. As I continually struggle to maintain my relative independence amid the challenges of some very frustrating and debilitating challenges, it is a survival tool. To that end it is important enough to be among the highest priorities in life. Thus when misfortune struck I put much on the line to recover.

Over the past several years, with sacrifices on my part combined with generous contributions from fellow hams I have been on a station building spree. I got back into VHF/UHF weak signal work, greatly improved my HF antennas, and for some time was heavily into experimenting and attempting to work DX on 2200 meters. Things were going very well but all of that changed one winter night in December, 2020. We had a wet, sticky snowstorm that night. All of my wire and yagi antennas were heavily burdened with snow. At some point the strain was too much for the 2200m T antenna that was suspended between my two 100 foot Rohn 25 towers. It broke at one end and fell. The sudden reduction in side loads on the towers caused them to move slightly. With the burden of extreme weight of the snow, this caused significant, but fortunately not catastrophic damage. Some yagi elements were bent, traps damaged, coax cables damaged, masts bent just enough to bind, and one Rohn 25 top section was bent slightly, causing rotation to be extremely impaired on that one. All of the antennas from both towers were going to have to come down for repairs to themselves and the towers.

Side view of the 2200m antenna before the incident. It is strung from a point 103 feet up a tower on the right, and 95 feet up the tower on the left. That three wire top hat can accumulate a tremendous snow load under the right conditions.
Another view of the 2200m top hat, taken from one of the towers. Failure occurred when the antenna broke free of an insulator at one end.
Base and coil platform for the 2200m antenna. There is matching transformer and tap selection relays in the box at the left, a 2.2 millihenry coil/variometer in the blue drum, and a smaller version of same for occasional use on 630m in the bucket at the right.

There are no photos of the aftermath or 2200m antenna laying in the snow. I was too depressed that morning to want to document anything. I stabilized what I could and over the next several days foolishly repaired the 2200m antenna. That allowed me to continue LF operations until Spring but I knew those days were coming to an end. Assuming I was able to repair the towers and other antennas, I could never again risk a similar disaster.

The first challenge was how to finance repairs. If I chipped away at it with whatever I could manage to set aside from my income, recovery would take years. The other option was to see if I could get a loan, despite my fixed income falling below lender minimum guidelines. I was not doing so well since the loss of most radio activities. Under some gentle prompting from my health support team I decided to pursue a loan. Fate smiled upon me and I got the loan, a sum not less than a third of my annual income. It will take some time to pay that off but I was on my way to rebuilding!

It was going to be a big project for me. I do all antenna work alone. That means a lot of trips up and down the towers, as I have no one on the ground to do anything and must often make several trips up for simple tasks. There were complicating factors going into this. One was that several months earlier we lost a local ham and professional tower worker whom I had known for 40 years. He died in a fall from a tower. To be honest that really shook me up and I had some difficulty with climbing early on in this project because of it. I was at least 40 pounds overweight which compounds that darn gravity thing! But I was going to rebuild or perish in the attempt! Lastly there are always days that I am unable to work or be outside, and that has been greatly compounded by a neighborhood situation which has had several of us making complaints. It was very difficult this year to find times that I could do anything at all. I often started around 2:00 AM and finished work shortly after dawn. These same factors make it impossible to schedule work sessions even when volunteers might be available. Under current conditions I either do antenna work alone or it won’t happen at all. I don’t know how many years I will be able to continue this, so I am making the most of it while I can!

First there were preparations and getting antennas down from the more heavily damaged tower. The 2200m antenna was taken down for the final time, a very sad day since that extremely challenging band had been of great benefit to me. I miss it every day. Some trees that had rather quickly grown up along the path of my tram line were cut, and the tram line was hauled up into place.

The 2200m antenna doesn’t look like much after disassembly! Some coils of wire, three 12 foot aluminum spreaders, and some big honking insulators.
These antennas had to come down, even though things don’t look too bad in this photo. Traps on the TH11DX had broken (shattered!) plastic end caps and were weak and wobbly, some element tips were slightly bent and the boom truss was in danger of failing. Coax had issues on the 6 and 2 meter antennas, boom truss on 2m had partially failed, some 6 meter elements rotated out of plane, and the mast was severely binding in the tower top due to slight bending of both the mast and the tower top section.
Trees have been removed from the area on the left to provide space for tramming.
Ropes and cables for tramming operations. One wire rope is the tram line, the other is a backstay to prevent failure of the mast from the stress of tramming the heavy TH11DX.
The mast backstay attached to a rope and ready to be pulled up.

Special tramming operations needed to be carried out for the 6 and 2 meter antennas in order to get them past the elements of the TH11DX. It might have made more sense to remove the TH11DX first, but this was early in the season when I was very nervous climbing. To be honest, this was a mind game. I needed to see the big expanse of the TH11DX below my feet as I stood on a mast step to reach the upper antennas, or I would never get myself up there! I will argue that one should not climb if experiencing such discomfort and having to play such mind games but this was do or die for me. I was willing to take the risk of pushing myself into uncomfortable situations. In order to solve this clearance problem, the tram line was run horizontally from the mast over to the top of the other tower where it was joined to a rope running through a pulley down to a hand winch at the base of the tower. This allowed the VHF antennas to leave the tower going out horizontally, then to be lowered to the ground by letting out rope from the winch.

The 2 meter antenna suspended on the high, mainly horizontal tram line.
Tram line being lowered with the 2m antenna hanging in the middle.
The 2m antenna nearing ground level.
6m antenna out on the high tram line.
Tram line being lowered with the 6m antenna on it.
Since I was still about 40 pounds overweight at this stage, I took advantage of the tram line to bring up my bucket of tools… less gravity pulling at me than if I climbed with it attached to my climbing harness.

With the smaller antennas down it was time to tackle the TH11DX. For this, the tram was rigged in a somewhat more conventional manner, now going from the top of the mast down to a few feet above ground on the other tower. After the nearly 100 pound antenna was at ground level, I learned that I need to eat more Wheaties or something! It was a struggle to pick it up, walk over to the short Rohn 45 tower with it, and mount it at shoulder level on that tower where it would remain until everything was ready for it to go back up.

The backstay tension system. This is critical when tramming nearly 100 pounds of antenna with a tram line attached to an aluminum mast!
TH11DX suspended on the tram line. The tram line and backstay can be seen.
TH11DX about half way down the tram line.
TH11DX has nearly reached ground level.
Tram line has been slacked off by means of the comealong by which the tram is attached to the slings on the tower. That lowered the TH11DX the final bit onto saw horses.
The TH11DX moved to a temporary spot for repairs.

I was not doing so well after months of not having radio which I rely on for stress management, and really wanted to be active for sporadic E season and the Perseids meteor shower. I decided to repair and mechanically upgrade the 2m antenna and then temporarily put it on the other tower, below the 222 and 432 MHz antennas.

New, upgraded 2m boom to mast clamp. Overkill.
New, upgraded 2m truss to mast clamp. Overkill, again.
New 2m truss to boom clamp. The truss itself was upgraded from dacron rope (too stretchy!) to stainless wire rope.
Refurbished and upgraded 2m antenna.
OK, now I am happy with the alignment of elements!
2m antenna on the tram line ready to go temporarily to the northeast tower. Rather than lower HF wires out of the way, I opted to use the same high tram running between the tops of the towers, but in the reverse direction (rope, pulley and winch now on the southwest tower).
Quick and dirty rigging of antenna to tram line, but it works fine.
2m antenna on the raised tram line.
2m, 432 and 222 antennas on the northeast tower.

I caught a couple of massive E skip openings on 2 meters and did very well in the Perseids on both 2 meters and 222. I was glad I took this step of putting the 2 meter antenna up in a temporary fashion. After the Perseids it was time to remove all antennas from the northeast tower and get to work on the new VHF/UHF stack there.

The 6m antenna needed two elements rotated back into plane, new boom to mast clamp, new truss to mast clamp, new coax and a rebuild of the center of the T match.
All of the antennas down for work. 6 and 2 mounted on the utility trailer, 222 and 432 on saw horses, TH11DX on the short tower. 222 and 432 got new coax, new boom to mast, and new truss to mast.
The 2m antenna hanging on the tram line before dawn, ready to go up at first light while there is no wind. It is going up already attached to a 6 foot mast extension.
The 2m antenna is up. Photo clipped from a drone video.

I had a setback after getting 2m, 222 and 432 yagis up and mounted on the mast. While raising the mast to final position in preparation for rotator installation and adding the 6m antenna, the three coax cables got caught on the tower and damaged. I had to take all three antennas down and replace the coax a second time!

6m antenna waiting on the tram line for first light.
Sun’s up! Time to go!
VHF/UHF antennas up, northeast tower work finished (mostly).
I am happy with alignment of booms on this stack.
VHF/UHF stack from above.
VHF/UHF stack just after sunset.

Now it was time to get to work on repairing the southwest tower. I added a temporary set of guys 10 feet down from the top and lowered the regular top set. The first challenge was removing the old mast and rotator. I had to hammer things apart and beat the mast out of the Rohn 25 pointy top section with a sledge hammer! That’s a lot of fun 100 feet in the air. Replacing the tower top section required some special rigging. I had LDF5-50A, 0.84″ CATV line and rotor cable all running up the inside of that tower! There was no way I was going to dig those buried cables up and pull them out of the tower if I didn’t have to. I couldn’t replace the top section using a standard 12 foot gin pole because it lacked sufficient height to lift a tower section straight up and free of the cables. I made a long gin pole out of a 20 foot section of 2 inch 6061 schedule 80 aluminum pipe and mounted it across two tower legs with pieces of 2 inch by 2 inch by 1/4 inch thick galvanized steel angle. As with all tower section lifts, I used a counterweight on the rope below the gin pole to take most of the weight of the section. I attached a length of 1.5 inch OD 1/8″ wall aluminum tube to the braces of the tower top section to act as a lever/handle so I could push it up and off the cables. This worked out pretty well, and the new stop section was rigged the same way for going up and over the cables. In the interim since the tower was first installed I had managed to acquire a 25AG4 flat top section which is far more desirable than the pointy top. After getting the top section replaced, the permanent guys were put back in place and the temporary set removed.

The old top section rigged for removal.
The tower without a top section. Well, that looks a bit odd!
Old top section and the new one rigged for raising.
New top section in place.

I mounted a proper thrust bearing on the tower top, and put an accessory shelf at the bottom of the 25AG4 for the rotator. In between another accessory shelf was fitted with a centering bearing made of Acetal plastic. I used DX Engineering shelves and I must say they are far better than Rohn shelves! The top bearing is also a DX Engineering product. The next task was getting the new 22 foot long 4130 chromoly mast into place. Weighing 125 pounds it was going to be a challenge for me. I once again used the long gin pole to good advantage. Instead of using counterweights, I rigged a worm gear winch to haul the thing up. This was the one thing I did have help with for about 10 minutes. I hauled the mast up until the top of it was inches below the top of the tower, then had a helper run the winch while I was on the tower for the last 23 feet of lift and dropping the mast into the tower.

The mast ready to be raised.
A different view of the mast raising setup.
Tower top rigging for mast raising. From this angle, it doesn’t look like a 20 foot gin pole.
The winch used for mast raising.
Winch mounting. Well, it did work…
The mast is in!
The gin pole has been removed.

I did manage to sneak an upgrade into the rebuilding effort. I acquired an OptiBeam OB1-4030 rotatable dipole to replace my 40 and 30 meter inverted V antennas that always seemed to have me struggling to work the DX, let alone struggling for contest QSOs. I had been hearing that a dipole beats an inverted V at the same height, so I decided to try this after two failed attempts at home brewing a two band rotatable dipole in recent years. Besides, I was on a campaign to eliminate as many wire antennas hanging off the towers as possible. Skipping ahead, it turns out the improvement is nothing short of incredible! My 40 meter inverted V was at 104 feet, 30m at about 90 feet. The OB1-4030 is at 108 feet on the other tower 145 feet away. I was able to leave the old antennas in place for a while to make comparisons. The OptiBeam beat the inverted V antennas by margins ranging from 5 dB to more than 35 dB depending on the station and time of day! Every time! I have done extensive comparison using the Reverse Beacon Network. I have also experimented with calling DX stations many times with the old antenna and then the new one. Often they continue to CQ while I call time and again with the old antenna but I work them on the first or second call with the new one. I can work DX I never could before and get a much better run going in a contest. This is just amazing! Most of the time I found I no longer needed Beverages for receiving on 40 meters. The exception being during multipath conditions where the CW was difficult to copy. Then the Beverages still provide advantage.

The TH11DX needed more attention than any other antenna. The traps were taken apart, modified with additional screws to reduce wobble, shattered trap caps were replaced and covered with 3 layers of Super 88 vinyl tape, element tips were straightened, coax replaced and the ridiculously inadequate boom truss hardware was replaced with something more reasonable.

Original TH11DX truss to boom clamp. Seriously, MFJ/HyGain?
Truss to boom clamp replaced with a DX Engineering part.
The original TH11DX truss to mast clamp, which had broken after only one year of service and had to be patched up on the tower. It was nearly ready to break again. Ridiculous.
The new home made truss to mast clamp.

Six years ago I struggled to tram the TH11DX up working alone. I did it by hand, wrapping the pull rope around my waist, leaning back and walking backward for the pull. I was pleased to see that now, at the age of 58 I can still do it, and somewhat easier than the first time. That’s odd but I’m not complaining!

TH11DX on the tram line.
Another view of TH11DX on the tram line.
Closeup of rigging for TH11DX tramming.
TH11DX at the top of the tram line.
Final installation, TH11DX at 98 feet, OB1-4030 at 108 feet.

I was concerned about interaction between the TH11DX on 15 meters and the OB1-4030. I had chosen to start without a 90 degree offset to see what happened. I see no detrimental affect. The TH11DX still has a good pattern on 15 meters (and all other bands), SWR is fine, and from what I can tell it is working as well as it has all along. I got away with it!

The last of this work was completed with snow on the ground. As of December 2021 I still have some work to do on low band receive antennas which have somehow managed to develop issues during the a period of disuse. Other than that, all damage has been repaired. 160 meters through 70 cm are back up and running. The loan was a necessary evil but unfortunately it means very limited new projects for a while. During the course of this project, May through December, with great effort and force of will, I was able to lose 40 pounds. By the end of the project my comfort climbing was as good or better than it has ever been.

Why I am Falling Out of Love With VHF Contesting

I have been on VHF weak signal (meaning primarily CW and SSB operation and later digital) most of the time since 1986. I took a few years off between 2007 and 2016 but have put major effort into returning since then. During my years on VHF I have been active in most of the VHF contests.

My reasons for being involved with ham radio and the activities I seek out within the hobby may be different than most. I have always been fascinated by radio and I love DXing but this is also a much needed coping mechanism and stress relief for me. I am on many bands and modes because variety is key to getting what I seek out of this.

Several things made VHF operating and contesting different from HF. First there was propagation. On VHF there are a variety of propagation mechanisms including troposcatter, tropo, meteor scatter, aurora, sporadic E and if one has a capable station, EME. Each propagation type has its own unique characteristics and may impart a variety of effects to the signal. There is the characteristic flutter of meteor scatter, the hiss of aurora, libration fading on EME. Troposcatter signals can sound perfectly normal or they may have rapid flutter or even multipath effects. I loved hearing all the unique sounds. I felt connected to a variety of fascinating phenomena that made a signal go from here to there, learned to identify each of them and how to best exploit them. It was all part of the magic and wonder of radio.

Sometimes VHF signals are very weak. I love the challenge of digging out a weak signal by ear on CW or SSB, figuring out how to best adjust the length and timing of transmissions to get that weak one in the log.

In VHF contests one would get to know the other players. Every contest there were familiar voices on SSB and “fists” on CW. Even in the heat of battle, many would take a minute to say hi and exchange a brief remark or two. Sometimes one could get information about activity or propagation conditions that proved helpful. This was a thoroughly unique and enjoyable aspect of VHF contesting for many years.

VHF contests also provided a unique opportunity to make contacts on bands above 2 meters. Generally there is little to no regular activity up there, but many VHF contest stations have more bands and of course they wanted to work others on as many of them as possible. Generally one would work a station in 2 or 6 meters and make arrangements to QSY or “run the bands” with them. This was great fun and really made having higher bands worthwhile. If it weren’t for VHF contests I probably never would have ventured above 2 meters. Sometimes the challenge for me would be to run through several bands quickly to take advantage of a short propagation peak. I am pretty far from most of the VHF activity, so making the most of propagation peaks was important.

VHF contesting has changed a lot in the last 35 years. One of the most obvious changes is the decrease in activity. Twenty or thirty years ago I could get 70 to 90 QSOs on 2 meters in a VHF contest plus a good number on any other bands I had at the time. Except perhaps for a few hours between midnight and dawn, there were always signals to be heard on 2 meters. In contrast, for the past few years I have a more capable 2 meter station than ever before but no matter how hard I work at it, 30 QSOs on 2 meters was about all I could hope for. I was lucky if I got a dozen each on 222 and 432 MHz and whatever number on 6 meters depending on long range propagation which is far more prevalent there. There were long periods of time when no signals were to be found on 2 meters. Almost all of the big stations are gone now, so QSOs around the 500 mile mark (generally the limit for CW or SSB between well equipped stations under average band conditions at 2 meters and above) have become rare. Despite the sharp decline in activity I was still enjoying VHF contests. The longer distance contacts were all the more special and exciting since there were so few to be had.

Then came FT8. This is where my love affair with VHF contesting began to fade. It’s not that I hate FT8. I have used FT8 in previous VHF contests, day to day on VHF outside contests, and on HF. It can be a lot of fun and in some ways it is a better mode for me. Just days prior to the 2022 January VHF contest I ran piles of JA and Asia on 40 meter long and short path and had fun doing it.

The VHF contest activity that used to be on SSB and CW has been shifting more and more to FT8. Mainly this is on 6 and 2 meters while there is little to nothing going on above that. FT8 has brought many newcomers to VHF and contesting. I don’t argue that more activity is a good thing, especially in light of the decline in VHF activity over the past 20 years. Unfortunately it comes at the cost of nearly eliminating activity on traditional modes. For me this has mostly killed the uniqueness and fun of VHF contesting.

The personal connection to VHF propagation phenomena is gone. With FT8 signals are either too weak to hear, or there are several signals and it isn’t possible to hear the unique characteristics of those that are undergoing propagation curiosities. The magic and wonder of it all is gone. It isn’t possible to adapt timing, speed or length of transmissions to compensate for propagation anomalies, as all of that is locked into a fixed format. It is also common to lose contacts to QSB that I know I could have completed on SSB or CW. FT8 contacts take too much time to ride the sometimes short peaks.

For the most part the connection to people I know is gone. While it is possible to exchange a very brief remark on FT8 it is cumbersome and few do it. You need to be a lightning quick typist. It’s not the same as hearing a familiar voice or CW sending style. I find it sterile.

Making arrangements to run the bands is harder with FT8. I know some have had success with it and there is a new technique now being proposed or tried that might help somewhat. But still, I think it is much harder with FT8 than it was with SSB or CW. Also, you either need to first QSY to SSB to make arrangements, or try to run the bands on FT8. Either way takes longer than the quick, snappy band changes and QSOs one could make using traditional modes. This is not good for me. Being far away from most of the activity I often depended on running through the bands quickly to get those contacts during a short tropo peak.

I have tried to get something unique and special out of FT8 on VHF but have not succeeded. The unique feel of VHF contesting has been lost. Without that uniqueness I am losing interest. Prior to this FT8 transition, I would prioritize VHF contesting over HF contesting or DXing because it was unique and fun. Now, with what was unique and special about VHF nearly gone, I get more benefit out of chasing DX half way around the world on HF than I get from participating in a VHF contest. That is the bottom line. It may be true that at some point during a contest there is a small amount of activity on other modes, but listening to white noise for hours to catch 10 QSOs is not fun nor is it helpful to me in other ways. That is too little return on investment of my time, to say nothing of money tied up in a VHF station. After listening several times in the recent 2022 January VHF contest and hearing mainly FT8 on 6 and 2 meters and nothing on higher bands I voted with my band switch. I went to HF and worked DX half way around the world because I got more out of that than I would have working the VHF contest.

This isn’t the first time I have felt the rug had been pulled out from under me on VHF. My years of absence from VHF between 2007 and 2016 were precipitated by EME going from CW to JT65. I had spent a fortune and a great deal of time building up my EME station only to have the fun and benefits suddenly vanish. Since EME was no longer providing what I seek from the hobby I dismantled the station and sold everything off in order to build a better HF station. That was a necessary move. It took some time to regroup and begin rebuilding VHF with an emphasis on terrestrial operation and contesting. Now VHF contesting and operating in general seems forever changed by FT8.

Change is inevitable and the VHF world has moved on. Currently there is some discussion about changing VHF contest rules to encourage more SSB and CW activity. Even if changes are made, I have my doubts that it will actually revive use of those modes. There was some tinkering with EME contests after the digital revolution but did it bring back CW? For the most part, no. In the end I hope the influx of new blood brought about by digital modes proves a positive thing for ham radio, but I think we have to accept that any change which drastically alters the very nature of an activity will inevitably result in losing some, like myself, who came to and enjoyed that activity precisely because of its unique nature.

I would not presume to think of mine as a big station, though with 1500 watts on 6 and 2, 800 watts on 222 with long yagis 100 plus feet in the air it is not exactly small either. I have a high and long yagi on 432 but lack power there. If one were to consider this a big station then I guess am just the next to fall. I am not sure whether I will leave VHF altogether but one thing I do know beyond a reasonable doubt. Had I known in 2016 where we would be just five years later, I would not have made the effort to return to VHF. Building the station was a genuine hardship and involved many sacrifices. I wish I had that money back to pursue other interests where there is still something of personal value to be gained. With the changes occurring on VHF I find myself thinking about what other antennas I would have room for if I removed all of the VHF antennas from the tower. I am deeply saddened that we have come to a point where I would even consider that after all I went through to build the VHF station, but here we are.

First USA to Europe Amateur Radio 2200 Meter QSO

This is one of a series of “Notes” I published on Facebook. Since Facebook has discontinued the Notes feature, I am publishing that series here on my blog.

It was early morning on the 28th day of March, 2018. Most people were sound asleep but not me. I was in my ham shack, hands trembling, heart pounding as I typed a few letters and numbers into my logging program. I could barely breathe. I had just completed one of the most exciting QSOs of my nearly four decades chasing DX. This single QSO cost more money and time than any other I had ever made. It was a QSO with England. You may wonder what is so exciting about that when any ham with five watts and a piece of wire can contact England from Maine. Well, this was special because we did it on the 2200 meter band. It was the first amateur radio USA to Europe QSO on what is, for us, a new band. This was no easy feat. It required months of station building and four nights just to complete the QSO. Some would call it a ridiculous folly and see no sense at all in it. But to me this is the true spirit of amateur radio, finding a way to communicate against the odds, adapting equipment and technique to accomplish the desired result. It is man and his machine against nature, determined to succeed under the most difficult circumstances.

The 2200 meter band allocation is 135.7 to 137.8 kilohertz in the long wave part of the radio spectrum known as LF or low frequency. In some ways this goes back to amateur radio’s early roots on 1750 meters, but it had been more than 100 years since U.S. amateurs were allowed to transmit in this part of the radio spectrum. These frequencies are not easy! Normal size antennas would be huge. A half wave dipole would be 3400 feet long; a quarter wave vertical towering to a height of 1700 feet. Natural and man made noise tend to be very high in this part of the radio spectrum and ionospheric propagation is feeble compared to the short waves. On top of that, we are only permitted to run one watt effective isotropic radiated power (EIRP). That is flea power compared to what we can use on most any of our higher frequency allocations! By comparison, when I was doing EME (moonbounce) on the two meter band I was legally running about 450,000 watts EIRP. But ham radio DXers who like a good challenge can be a very determined lot. The greater the challenge, the greater the reward.

I became interested in 2200 meters in late 2016 after the local club asked me to prepare a report on this and the 630 meter band, which were expected to soon be opened for amateur radio use in the U.S. At that time the only way to legally transmit on either band was to get a Part 5 FCC license under the experimental radio service. One could almost write one’s own ticket on power limits and frequency allocations but this wasn’t amateur radio. I did apply for and was granted a Part 5 license but never used it since FCC opened these new bands to amateurs just as I was getting a station put together. I found receiving on 630 meters to be relatively easy, if somewhat plagued by noise and available antennas. But 2200 meters was a very different thing. It took weeks of experimentation and testing to detect the first trace of signal on this band. Many weeks later after more trial and error I was rewarded with my first reception of a ham radio signal from Europe on the band when DC0DX appeared in my WSPR decodes. I confess it was then that I first started to dream of someday making a two way QSO across the Atlantic on long wave.

I thought I had plenty of time to build a station, since the FCC process on opening these bands had been dragging on for years. But in the Spring of 2017 the announcement came that we would get these new bands in a few months! Now the race was on. I frantically began building transmitting apparatus. I didn’t quite make it for opening day in October but I was on the band a few weeks later. Early amplifiers were plagued by budget shortfalls and poor performance. By mid February, 2018 I had managed to achieve 0.5 watt EIRP, just three decibels below the legal limit. The flood gates opened and to my amazement I started receiving numerous WSPR decodes from European stations. Wow!

I believed a two way trans-Atlantic QSO was in my future but was not sure when. I was eager for an attempt but still very much struggling with equipment and budget. I was hearing stations from Europe. Stations from Europe were hearing me. But for the most part, those who heard me did not have transmitting capability or not sufficient to reach across the Atlantic. The best bet would seem to be 2E0ILY. We had conducted tests earlier in the season and I could often copy his JT9 beacon. Chris could occasionally copy my WSPR signal but not at sufficient strength for JT9 to be viable. I knew there were ways to get it done, but this would take several nights. I was hesitant to ask anyone to commit such effort and time to a QSO.

As the relatively quiet season was drawing to an end I realized another season is never guaranteed for any number of reasons. I had given the matter considerable thought. There were no practical digital modes which would work with the low signal levels involved. Two old school modes came to mind: QRSS and DFCW. Both are very slow, trading time for weak signal detection capability. QRSS is extremely slow CW, so slow in fact that it can only be copied by reading it off a computer screen. In this case, a speed of QRSS60 would be best, meaning that each dot would be 60 seconds in duration. A dash is three times as long, just as in normal CW. This mode requires nothing special for equipment, as it uses on/off keying of a carrier and is fairly tolerant of frequency drift. But, the shortest element, the dot, sets the achievable signal to noise ratio. There is no advantage gained from the dashes being three times as long, so it is essentially time wasted. Time is valuable, as signal fading means you have a limited amount of time to copy the message. DFCW, or dual frequency CW is an offshoot of QRSS in which dots and dashes are the same length but sent on slightly different frequencies so that one may be differentiated from the other. This saves considerable time with no reduction in signal to noise ratio but requires more complex transmitter keying and reasonably tight frequency stability. In a typical DFCW60 transmission, the dot to dash frequency shift is a small fraction of a hertz. Transmitter and receiver drift must be held to less than this in order to avoid dot-dash ambiguity at the receiving end. It would take about an hour to send two call signs at DFCW60 speed. It was now late March. Clearly there would not be enough common darkness between Maine and any part of Europe to allow a QSO to be completed in a single night at this speed.

It may be useful to consider what is a QSO. These days the term means different things to different people. I came up through the DXing ranks with what is now a somewhat old school definition for a minimum acceptable information exchange to claim a QSO under very weak signal conditions. I still firmly believe in the old way, as we are after all supposed to be communicators. That definition is that each station must receive from the other both call signs, signal report or other piece of information, and acknowledgment. This requires that two transmissions be copied in each direction. Anything less than that does not seem like communication to me, and leaves me with no sense of accomplishment.

It seemed the best way to go about it would be to borrow operating and reporting techniques from EME, modifying procedure slightly to account for the much longer period of time required to send a message on the long waves. In this procedure, the letter O would be used as a signal report to indicate full call signs had been copied; R and O would be used to indicate full call signs plus signal report had been copied; R by itself to indicate call signs, report, and R (as part of R and O) had been copied. As for timing, it seemed sensible to use night by night sequencing. That meant the two stations would take turns transmitting, one going the first night the other the second, alternating back and forth throughout the QSO. It would take a minimum of four nights to complete a QSO, assuming the full message could be copied each night. If it wasn’t, additional nights would be required for repeats. That’s really slow! But it did offer some advantages with the equipment available. In order to achieve the required frequency stability I would have to use my QRP Labs Ultimate 3S beacon transmitter. The U3S is a great piece of gear, but editing messages is tedious. Night by night sequencing would give me all day to change the message for the next night’s transmission! A complete QSO would look like this, where bold indicates my transmissions, italics indicate transmissions from the other station:

2E0ILY N1BUG
N1BUG 2E0ILY O
RO
R

Meaning of the first line is obvious. I am transmitting both call signs. In the second line my QSO partner adds the signal report, O, to let me know he had copied both call signs fully. In the third line I send RO which means I have copied call signs and my report, your report is O. In the last line my QSO partner sends R, meaning I have copied all on my end. When I copy the R the QSO is complete. If a message is not copied, or not enough information is copied, then one continues to transmit the previous message until getting something back which advances the QSO.

I had worked out a viable technique. Now I just needed a QSO partner. Just in time I worked up the courage to ask Chris, 2E0ILY if he would be willing to give it a try. I was very happy when he said he’d have a go at it.

We had decided I would transmit the first night, so I set the U3S to send ‘2E0ILY N1BUG’ over and over during the hours of common darkness between our respective locations. It turned out to be an ugly night in terms of weather. I was getting heavy wet snow squalls. Nothing causes a 2200 meter Marconi antenna (vertical) to go out of resonance any quicker than wet snow! These antennas are electrically short and require huge loading coils to resonate them. They are high impedance antennas and the bandwidth is very narrow. These antennas are prone to changing characteristics on a whim. Every time the snow started, stopped, changed intensity or the amount of snow clinging to the antenna changed, the thing went wandering up or down the band and required retuning for resonance on the operating frequency. Fortunately the variometer at the antenna base was motorized and I could adjust it from the comfort of my transmitter room. But I had to keep a constant vigil, watching antenna resonance and adjusting as needed. I had my finger on the switch for variometer adjustment far more than not. After a while my fingers were getting sore from constantly manipulating the tuning switch. Perhaps I shouldn’t have used a miniature toggle switch there. If you think this was an automated QSO without operator involvement, think again! My presence and diligence at the controls was absolutely vital that night!

Message copied from 2E0ILY on the second night of the QSO (annotated). Note dots on the lower frequency, dashes shifted 0.187 Hz higher. When the signal is this strong, elements tend to bleed together a little but since they are of fixed length it is still very readable.

The next night it was my turn to listen. Due to the extremely slow speed DFCW is copied visually using software designed for this purpose. Anxiously I stared at the screen. When I wasn’t nervously pacing, that is! I began to see traces of signal, then an odd letter here and there. There was a B, a 2, a Y and I even thought I saw an O but couldn’t be sure. Eventually conditions stabilized and I began to get steady print on the screen. Waiting 60 seconds for a dot or dash to fully paint on the screen can be agonizing. Slowly the elements accumulate and become characters. If you are lucky, propagation holds up long enough to copy the full message. Fortunately, after somewhat of a slow start copy remained solid and I eventually had N1BUG, 2E0ILY and a very nice O painted on my screen! I had copied full call signs and a signal report indicating Chris had got full call signs from me the previous night! We were half way there!

The third night I was transmitting again. Since I knew Chris had already copied full call signs from me, it was not necessary to transmit them at this stage of the QSO. Technically I could have just sent RO repeating throughout the night, but being of the cautious type I decided to include call sign suffixes to provide positive evidence the correct station was being copied. Thus the message I transmitted was ‘ILY BUG RO’. This was a risk as it takes far longer to send than simply ‘RO’ and signal fading can be a huge factor. At least the weather was better and I didn’t have to ride the variometer all night.

Soon it was night four, back to pacing and staring hopefully at the screen. I was especially nervous that night, as I had some strong, drifting interference right on top of Chris! Finally it moved just enough that I could make out ‘BUG ILY R’. There was rapid fading and the dash in the R was much fainter than the rest. Fainter but unmistakably there. I was positive about the R but being the cautious type and realizing this QSO would be an amateur radio first I really wanted to see it more clearly before declaring the QSO complete. The signal faded and nothing was seen for hours. Sunrise at 2E0ILY was fast approaching and I had to make a decision. Was I going to log the QSO or retransmit my RO message the following night in hope of getting better copy of the R on night six? Just before dawn the signal reappeared, very weak. I could barely make out ‘BUG IL’, then the ‘Y’ was quite strong. Given the proximity to sunrise every minute felt like an eternity. Ticking of the clock became offensively loud. It was going to take another four minutes to get an R! Would it hold up that long? Slowly, as the clock ticked and my heart raced, a crystal clear ‘R’ painted on the screen. There were traces of signal for some time after that but nothing I would call readable, save a stray ‘Y’ that somehow came through well past dawn. So it came to be that shortly after 0600 UTC (1:00 AM local time) on this, the 28th day of March, 2018 I entered this QSO into my station log. We had done it!

QSL card received for this very memorable QSO!

This was an amateur radio first from the U.S. but nothing new in terms of distance on the 2200 meter band. Canadian stations, operating under amateur call signs but otherwise a program similar to our Part 5 licenses, had worked Europe years earlier. Much longer distances had been covered. But for me this was one of the most exciting QSOs of my nearly 40 years as a DXer. It ranks right up there with my first EME QSO, the QSO that put me on the DXCC Honor Roll and several other notable events such as being credited with the first North American two meter auroral E QSO back in 1989. My thanks to Chris, 2E0ILY for his time and patience to make this happen – not to mention the kilowatt hours of electricity expended.

DFCW may be old school but it gets the job done under extremely difficult conditions. DFCW ‘decoding’ is done by the human operator. Deciding what has been copied is not left to computer software which may use assumption or non amateur radio means to fill in things it couldn’t positively make out over the air. DFCW is painfully slow but here we had a very positive over the air exchange of full call signs, reports and acknowledgement without any shortcuts or fudging. I was very pleased with that!

Although this single QSO cost more than any other, this was a low budget operation. Most of the LF station consists of low cost kits and home built gear. Equipment used at my station for this QSO was the QRP Labs Ultimate 3S driving a home built amplifier to 175 watts output. The transmitting antenna was a 90 foot Marconi (vertical) with a top hat consisting of three wires each 100 feet long, spaced five feet apart. Three one inch diameter aluminum spreaders plus triangular wire sections at each end are electrically part of the top loading. This is resonated at the base with an inductance of approximately 2.3 millihenries. Loss resistance at the time was near 100 ohms, resulting in EIRP of 0.5 watt. For receive I used a 30 foot low noise vertical, band pass filter, W1VD preamp, and a modified Softrock Lite II SDR receiver.

DX: Breaking the Pile

This is one of a series of “Notes” I published on Facebook. Since Facebook has discontinued the Notes feature, I am publishing that series here on my blog.

There is tremendous competition for contacts with rare DX and especially DXpeditions to places that are only on the air once in ten or twenty years. With tens of thousands of eager DXers trying to get through and limited time, the pileups can be enormous. Not everyone who wants the contact is going to make it. Is there any hope for the DXer with 100 watts and a wire or vertical? Yes! The rarest places on Earth can be worked with 100 watts and a wire, but when one has a small station and the competition is intense, lack of signal strength must be compensated by skill and knowledge. Either that or a lot of luck. Success with a small station takes time, skill, and patience but it can be done! Even QRP stations (five watts or less) routinely get into the logs of the rarest DX. Let’s talk about how this works and what you can do to improve your chances.

Virtually all DXpeditions (and sometimes other DX) operate split frequency, meaning they are transmitting on one frequency, but not listening there. They are listening for callers on another frequency or range of frequencies. This is absolutely vital, as otherwise the frenzied callers would obliterate the DX signal and no one would be able to hear it. The DX operator will periodically indicate where he is listening. “Up” on SSB typically means five kHz (or more) above his transmit frequency. On CW, “up” usually means one kHz unless specified otherwise. The rules of thumb are similar if the operator says “down” (or “dn” on CW) but, of course, you should transmit below his frequency rather than above it. Sometimes the operator will specify a range of frequencies on which he is listening, such as “up five to ten”. Other times he may specify an actual range. For example, “two hundred two ten” if the DX is transmitting on 14.190 would mean he is listening from 14.200 to 14.210. The equivalent on CW is QSX, though it is not often used. A DX station transmitting on 1.812 MHz in the 160 meter band might send “QSX 30” meaning he is listening on 1.830. This is not the same as “up 30” which would mean 1.842. It is vital to figure out where the DX operator is listening for calls and transmit in the right place.

If the DX is listening on one specific frequency, such as up one on CW or up five on SSB, the choice of where to call is fairly simple. You might try slipping off to the side just a bit, such as up 0.8 or up 1.2 on CW; up 4.5 or up 5.5 on SSB. This can make your signal stand out from the crowd a little. If at all possible, it helps to listen to not only the DX but also the stations he is responding to. Are all the ones he is working on exactly the same frequency, or is he looking around a little? This is where having a second receiver really shines! Many “DX class” transceivers have a second receiver, or subreceiver, for this purpose. Lacking that, you can toggle back and forth between VFO A (on the DX frequency) and VFO B (on his listening frequency) to establish what exactly he is doing. Be very careful, however. Doing it this way makes it easy to accidentally transmit on the DX station’s frequency, causing QRM to others struggling to hear him. If you are using two receivers, or a radio with a subreceiver, headphones should be set up so you hear the DX in one ear and the pile up in the other. This will make it much easier to keep track of what is going on.

If the DX is tuning a range of frequencies for calls, your chances of success in a large pileup are much better – especially if you have the proper techniques and equipment for the task. First let’s look at what to do if you are able to monitor both the DX and the pile up at the same time. Try to locate the stations he responds to in the range of frequencies he is tuning. This is a skill that takes some time to learn, but it is well worth the effort. Is there a pattern to his tuning? Does he work several stations on the same frequency before moving, or does he move after every QSO? Is he tuning randomly, or only in one direction? How far does he usually move between QSOs? If he is tuning in only one direction, what does he do when he reaches the edge of the pile or the end of his specified range? Does he reverse direction and start working his way through the opposite way, or does he jump to the opposite end and always tune in the same direction? Does he occasionally seem to jump to the outermost edge of the pile, or just beyond it, and pick up a weaker station? Yes, some operators do just that, and knowing this can really improve the odds of you making the contact! Establishing the pattern of the DX operator can be a tremendous help. Often you can anticipate where he will listen next and position yourself accordingly. Of course you won’t be the only one doing this, and if you are a small station you may get covered up by the big stations who have this technique perfected. In that case you want to try to find a “hole” in the pile that is near, but not exactly on the mass of callers who have properly anticipated. This is not an exact science! It is something you get a feel for with practice!

If you lack the ability to simultaneously monitor two frequencies, then knowing where to call in a widely spread pileup becomes an order of magnitude more challenging. You may be able to establish a pattern by jumping back and forth between VFOs, but this will definitely take a lot of practice to learn. In some cases a panadaptor may provide clues as to where he is taking callers, but don’t count too much on it. Many less courteous operators, and those who are not hearing the DX well will call out of turn and confuse the issue. It is always a good idea to monitor DX spots using one of the many software applications out there for this purpose. Some of those who work the DX will immediately send out a spot, and some of those will indicate where they were transmitting at the time of their QSO. This information is often very disjointed and incomplete, but nevertheless it can provide useful clues. You may find that you have been calling up five, but the DX just worked someone up twenty. In that case, you’re probably better off to move, at least for a while. Don’t depend on a web site for DX spots. The web based services are just too slow. You want a dedicated application which is constantly downloading new DX spots in real time. If none of this is possible, the best you can do is pick a frequency within the proper range and keep calling there, hoping the DX operator eventually catches you. This works, but it often takes considerably more time than the more advanced techniques.

Timing is important! If the DX operator is very skilled and is picking a call out of the pile in just a couple of seconds, there is very little point in sending your call sign multiple times every time he asks for calls. This will only slow things down and may lead to him doubling with you. Call once, then listen! If he is taking more time to pick out a call sign, there may be some advantage to giving yours two or three times (rarely more). Again, this is something you get a feel for with time and experience. If he sometimes gets a call immediately and sometimes it takes a while, the best bet is probably to send your call once, pause to see if he is answering anyone, and if not, give your call again. This is very useful but sometimes tricky, as you can get out of sync and miss the DX responding to people, or even end up repeatedly calling while he is transmitting. Sometimes you just have to stop calling and listen for a bit to get back on track. On CW, if you can operate full break-in (QSK) this is less of a problem since you can hear the DX transmit even when you are still calling!

Try to adjust your sending speed for conditions and the apparent preference of the DX operator. On CW, try to match the speed of the DX operator or just a bit slower if possible, unless conditions are such that fluttery signals are causing dits to go missing. Then it may be best to slow it down a little. On SSB, try to determine whether the DX operator can get a call sign correctly when it is spoken very quickly. If so, try that. It saves time and maximizes the DX QSO rate. If not, slow down and give it at a speed that seems to be working for him. Again, this is where being able to monitor both sides helps.

It is important to understand the nature of the game. The DX is trying to work as many stations as possible in a given amount of time. Brevity is important. One aspect of this is that contacts are only going to consist of call sign and a signal report, usually 59 on SSB, 599 on CW or digital modes. Another is in the way the operator responds when he gets a partial calls sign. Some may say “Who was the station with uniform golf in the call?” but this is inefficient. Many of the most experienced operators will just say “uniform golf” on SSB or send “UG” on CW. This is an invitation for you to send your complete call sign again so he can get the rest of it. Of course, you should only send your call sign again if it actually contains those letters (or something very similar). As an example of the latter, if a DX station on CW responds “BAG” I will usually go ahead and send my call “N1BUG” again since the difference between A and U on CW is just one dit – often mistaken in a pileup. On some particularly challenging bands, most notably 160 meters, it is often customary to modify these rules and send your call sign more than once at a time. Experience and observation will be your best guide. If the DX has asked for a fill on your callsign several times and is obviously struggling to get it, giving your call a few times can be an advantage. This is a judgement call.

Often a QSO ends with the DX operator simply saying “Thank you” or, on CW, sending “TU”. This means he is ready for the next caller, so send your call sign immediately. Other operators will identify with their call and/or specify where they are listening after every contact. For example “Thank you, Delta X-ray One Romeo Alpha Romeo, up five to ten” or “TU DX1RAR up”. It is important to listen and establish the operator’s style. If you were to start transmitting very quickly after you you hear “TU”, but he is actually sending “TU DX1RAR up” you will be doubling with him. I routinely hear stations doing just that. Listen. Figure out the pattern and how the QSO flow is working. It will pay off!

Knowing propagation characteristics can be a big advantage. It is much easier to work the rare DX when propagation favors your part of the world than when it favors some other densely populated area. Once again, experience is the most valuable thing you can have. There are situations where certain parts of the world are difficult for the DX to work due to propagation and large centers of ham activity being closer. This is why DXpedition operators often concentrate on specific areas at certain times. Be patient and wait until he is ready for you, then call. This may be frustrating when you are hearing the DX very well, but you will learn to appreciate it when you are the one in the disadvantaged spot and the rare DX listens specifically for your area! You will quickly learn what the DX wants. On phone, “Europe” or “North America” is obvious. “JA” is obvious if you recognize that as the primary call sign prefix for Japan. On CW these will be abbreviated of course: “EU”, “NA”, “JA”, etc.

Knowing the plan can help, too. Most DXpeditions publish preferred frequencies in advance of their trip. Even if they don’t, careful observation (and use of spotting software) will reveal what frequencies they favor on each band and mode. Let’s say you know propagation is good right now on 17 meters and they like 18.130 for SSB on that band, usually listening up five. The only trouble is, they aren’t on 17 meter SSB right now. That doesn’t stop you from listening there! I have worked more than one new one because I was “parked” on a frequency waiting – and became the first caller when the DXpedition appeared there. Obviously there is both luck and technique involved here, but it can work!

How well do you know your favorite band? Sometimes there are special circumstances, and knowledge of them can serve you well. On 160 meters, North America can transmit anywhere between 1.800 and 2.000. In many parts of the world the allocation starts at 1.810. In Japan they only have 1.810 to 1.825. Why is this important? Many DXpeditions will publish different listening frequencies on 160 meters for each region of the world. If a DXpedition in the Pacific is transmitting on 1.826 and listening both down and up (a common practice on this band), as a North American station you will likely do better calling up (eg. 1.827.5) than down (eg. 1.824.5) since you will not be competing with the Japanese callers who probably have the propagation and signal strength advantage.

Once again let me emphasize the importance of listening and patience. I once worked a new and very rare one because I had been listening for a while. The DXpedition was operating on 20 meter SSB, transmitting around 14.190 and listening 200 to 215 or so. As I was listening (and calling), I heard the DXpedition operator say “From time to time I will listen for small stations on two fifty five”. At the time I had a very poor antenna on 20 meters, and thought I had little chance of working this one, located on the far side of the world and, of necessity, using very small antennas themselves. A long time went by as he went on working stations in the 200 to 215 range. Those stations who had been calling on 255 eventually gave up, including me. I didn’t go away, however. I returned to calling in the big pile down below. Suddenly the operator said “Small stations, special frequency”. I frantically dialed my transmit VFO back to 255 and gave my call sign one time. He answered me! Bingo! I worked a new one because I had been listening and knew what this rather cryptic “Small stations, special frequency” announcement was all about. I only heard one other station call on 255, and he worked the DX also. Chances are most of the others who had been around long enough to hear his earlier explanation about the special freqeuncy had given up and gone away. Others didn’t know the special frequency. This probably explains why the operator did it this way — to reward those whose skill and patience gave them the edge. The point is, you just never know. It pays to listen carefully and above all, be patient and persistent.

Sure, having a big station helps. I work DX much more quickly now that I have 1500 watts and something of an antenna farm. But I did it quite successfully for many years with lower power and simple wire antennas. If I had to pick one single station improvement which made the biggest difference, it would neither be the amplifier nor the antennas. I would say it was getting a transceiver that has a subreceiver. That changed the nature of the game for me. Regardless of the station configuration, operator knowledge and skill are critical factors. Improving one’s skills often pays bigger dividends than buying an amplifier or putting up a huge antenna. None of us are born with DXing skills! The best way to learn is to jump in and start practice the techniques. See you in the pileups!

DX 2016: Personal Thoughts on an Exceptional Year

This is one of a series of “Notes” I published on Facebook. Since Facebook has discontinued the Notes feature, I am publishing that series here on my blog.

This is not a how-to ‘note’. These are my thoughts on the significance of major DXpedtions happening this year and what DXing means to me.

In the world of amateur radio DXing, 2016 is shaping up to be a year that will long be remembered by many of us. On any given year there might typically be one to three major DXpeditions, mostly to places that are uninhabited, remote, costly to reach, and thus activated only on rare occasions. This year there are four expeditions activating five of the rarest DXCC entities on Earth! Palmyra Atoll (K5P, January) ranked 16th most wanted out of 340 current DXCC entities; South Sandwich Islands (VP8STI, January), third; South Georgia Island (VP8SGI, January/February), eighth. These are all very rare places to be sure, having last been activated in 2005, 2002, and 2002 respectively. These three operations alone would have made for a banner year but there is more to come! Soon VK0EK will be activating Heard Island, the fifth most wanted entity. In April, FT4JA will activate Juan de Nova Island, sixth most wanted. These are all major events in the world of DX. All of these expeditions are large multi-operator, multi-station efforts, putting tens of thousands of QSOs in the log and giving a new one to many thousands of DXers around the world.

It may be argued, however, that of the lot Vk0EK could be the biggest event. In terms of statistics on number of people needing it, Heard Island ranks second of the major DXpeditions this year. But, last activated in 1997, it has been off the air longer than any other DXCC entity on Earth. To put this into perspective, consider this: A DXer who started in the year 2000 and managed to work all the major DXpeditions since could have 339 worked, with the upcoming VK0EK giving them the last entity on the current list of 340. That is huge! Every other DXCC entity has been activated at some point since the year 2000, with the sole exception of Heard Island for which we have to go back another three years to find the last time. VK0EK has stated an aim to make 150,000 QSOs, more than any of this year’s other mega-DXpeditions. It will be the most costly of the 2016 DXpeditions and could be the most costly DXpedition of all time. I cannot confirm the latter since I have been unable to find a final cost figure for the 2006 3Y0X operation from Peter I Island, at the time said to set a new record. Arguably, of all places on Earth Heard Island may be the most remote, the most difficult in terms of climate and getting there. Located in the “furious fifties” (referring to latitude) of the great Southern Ocean some ten days sail from South Africa and Western Australia, it is certainly not a place easily or quickly reached.

I was immediately attracted to DXing after getting my amateur radio license in 1981. I was 17, still full of youthful wonder and optimism. Growing up I had always dreamed of visiting far off places. Remote, seldom seen locations inspired my imagination more than any other. So I suppose it was only natural that making radio contact with distant and often exotic places would appeal to me. I was green in those days, though. I didn’t yet know about “mega DXpeditions” or DXCC entities that were on the air once every ten or twenty years. I was thinking of working 100 countries to get my DXCC award and even getting 100 on the most challenging MF/HF band, 160 meters. The idea of DXCC Honor Roll or Number One Honor Roll never entered my young head. [To qualify for Honor Roll, one must have confirmed contacts with enough entities to be within 10 of having all current entities on the list; with 340 current entities on the list, that means 331 or more. Number One Honor Roll means having worked them all – every single DXCC entity on the current list.]

A few years into my ham radio adventure I was distracted by moonbounce, or Earth-Moon-Earth (EME) operation on the VHF and UHF bands. A devout CW (Morse code) operator, I was especially keen on doing anything that was considered difficult or was well outside mainstream ham radio. EME was that and more, offering any operator who wanted it the ultimate weak signal challenge. It was man and his machine against the odds, overcoming challenges, fraught with difficulty, unpredictable and for some, irresistible. EME also challenged me in another way. I had to put my mechanical aptitude to use figuring out how to build large antenna arrays steerable in two planes, and do this on a budget so limited most people would probably have given up. I dreamed of attaining DXCC on the two meter band, but reached only 82 countries before digital modes displaced CW in EME.

Returning to HF a seasoned and more knowledgeable ham in 2004, I set my sights on working 300 countries on 160 meters. That would be as challenging as getting 100 on two meter EME! Not long thereafter I was struck by the desire to achieve DXCC Honor Roll and thus started to operate more on the HF bands, 80 through 10 meters. It isn’t easy. Once you get upward of 300 you’re going to have to wait for DXpeditions for the rest. Many of these will be very rare places and you may be waiting decades. Forget about “push button QSOs”. You’re going to have to work at getting some of them. Competition for those rare contacts is intense! For DXers, these factors add to the fun and sense of accomplishment.

DXpeditions provide recreation for tens of thousands who make much wanted contacts with them and thoroughly enjoy the chase. Moreover, they help to fill one of amateur radio’s long held primary roles: that of enhancing international good will. Often a multi-national team effort must come together in cooperation and fellowship to make these trips happen. Even where that may not be the case, amateur radio DXers are a worldwide fraternity spanning the globe, reaching across all political and ethnic boundaries. All share the common goal of making contact with these DXpeditions. In some cases, scientific expeditions and amateur radio DXpeditons are combined, as is the case with the upcoming Heard Island trip. DXpeditions to populated places with little or no indigenous ham radio licensees can help draw attention to the plight of third world nations and even provide humanitarian aid.

So here I am in 2016. K5P was my #327 overall, #285 on 160 meters; VP8STI #328 and #286 respectively; VP8SGI #329 and #287. I have since worked Ethiopia and Lesotho for new ones on 160 meters, bringing my total on that most challenging band to 289. If I work the upcoming VK0EK and FT4JA that will bring me to the magic number for Honor Roll: 331. Wow! It’s like seeing light at the end of a long tunnel. Yet there is a certain duality about it. Reaching a long sought goal is exciting and gratifying, but it also in some ways represents the end of a journey that in and of itself brought immeasurable joy. I am hoping to get Heard and Juan de Nova on 160 meters as well, though that is by no means a given. What a year! It had been quite some time since my last new one, overall or on 160. I certainly couldn’t have envisioned getting so many in such a short period of time at this level. Excited doesn’t begin to describe the feeling!

When one reaches this level, it is almost inevitable that thoughts of Number One Honor Roll creep in. It seems so close – only nine more – and yet so far. Is it possible? Seven of the remaining nine will probably come up for DXpedition within the next ten or fifteen years. They are not easy to reach or obtain permission to operate from but some enterprising team will no doubt find a way. I hope to be around to work them. North Korea (DPRK) and Turkmenistan are the most worrisome. Rarely someone manages to get permission to operate from DPRK, but it isn’t easy and there is never any guarantee of a “next time”. That is ranked #1 most wanted on the list. Turkmenistan currently doesn’t allow amateur radio licensing, so we can only hope for a change there. It ranks 24th most wanted and is quickly climbing toward the top. It’s safe to say I will be keeping my nose and an ear to the ground for information or rumors on these two.

For me, major DXpeditions aren’t just about the challenge of getting through the pileup or climbing another rung on the DXCC ladder. They are an opportunity to follow a team on a great adventure, to somehow connect with it. If life had turned out differently, that might be me out there going to those rarest places on Earth. I have the passion, the drive, the desire. At risk of seeming immodest, I believe I have the operating skill. I laugh in the face of any danger involved. I had an opportunity once. In 2005 I was invited to be part of a DXpedition to St. Paul Island. Admittedly this isn’t a wild Southern Ocean location or one of the world’s most difficult. But is is an uninhabited island, rare and sought after. Not being able to go ranks as one of the biggest disappointments of my life and still haunts me.

I don’t just get on the air and work major DXpeditions. I enthusiastically follow them. I make it a point to know who is going where, when, how they are getting there, what equipment they are taking. I want to know something about the place, its history, its wildlife, its amateur radio activation history. When the precise location of a DXpedition camp setup is known, you can bet I will have a good virtual look at the place with Google Earth. I haunt DXpedition web sites and DX information sites for any breaking news just prior to or during a trip. To the extent reasonably feasible, I collect DXpedition videos. It isn’t just about the contact. It’s the experience, the intrigue, the wonder. It’s the consolation prize for not being able to be there.

2016 is undeniably a banner year for those who, for whatever reason, desire to work major DXpeditions in rare places. It is the sort of year that comes around very rarely. On the air and in DX forums the excitement is palpable. For many it is the year a dream comes true; the year a threshold is reached, be it Honor Roll, Number One Honor Roll or some personal benchmark. For others it is the year for that one contact that speaks to something within, something which no other can quite touch. For me it is both. As VK0EK draws nearer, the excitement is so intense I feel as though I need a tether to keep me anchored to the Earth. That is not a feeling I am accustomed to. It stands in stark contrast to the more typical reality of life. This one is a “must do” on my list. Will it be another 19 years before the next opportunity to work Heard Island? Will there even be a next opportunity? With places this rare and difficult to put on the air, one never knows for sure.

Confirming Ham Radio Contacts: The Art of QSLing

This is one of a series of “Notes” I published on Facebook. Since Facebook has discontinued the Notes feature, I am publishing that series here on my blog.

QSLing, or exchanging of QSL cards goes back to the earliest days of ham radio. It is often said “a QSL is the final courtesy of a QSO”, which hints at the importance that has always been placed on this aspect of ham radio as a hobby. Traditionally a QSL is a postcard which confirms that radio communication was carried out between two stations. QSL cards have the callsign of the station issuing the card, information about the station location and owner, and possibly other information printed on the card. The callsign of the station contacted, along with date, time, band, mode and signal report is handwritten or otherwise filled into areas of the card reserved for this before being sent out. The front and back of my N1BUG QSL card can be seen in the cover photo. Why do hams exchange QSL cards? Some do it because they like to get and collect QSLs to commemorate memorable QSOs (contacts, conversations). Some QSL cards are truly works of art. Others feature breathtaking photos of exotic places. Others collect QSL cards for contact verification when applying for operating achievement awards such as Worked All States (WAS), Worked All Zones (WAZ), or DX Century Club (DXCC). These awards are not issued on the honor system. One must show some evidence that they did in fact establish radio contact with the locations they are claiming. QSL cards are the traditional means of verification.

How does this work? Suppose I make radio contact with a station in Iceland, and that for whatever reason I want a QSL card from that station to confirm or commemorate the contact. I will fill in his callsign and the contact details – date, time, band, mode, signal report and perhaps a personal comment on one of my station QSL cards. I will check a box on my card which says “Please QSL” to indicate I want a card in return. I will then mail my card to the other operator along with some means of paying for the cost of return postage. Why do we send return postage? Suppose the ham in Iceland makes several hundred or even several thousand contacts in a year and many of the stations contacted want his QSL card. If the Icelandic ham had to pay for postage to send each of those cards it could easily cost the equivalent of hundreds or even thousands of dollars. This could easily put the cost of ham radio out of the reach of many or force them to not respond to QSL requests! Chances are he doesn’t need my card for anything (he probably has a huge collection already), but I do need his. So, as a courtesy I will cover the cost of postage for the return card. When the other operator gets my card he will fill in the QSO details on one of his QSL cards (probably checking the “Thanks for QSL” box), then mail it to me. I may display it in my shack or file it away for later use in applying for awards, depending on my goals and interests.

When sending cards within the U.S. it is customary to send a self addressed, stamped envelope (SASE) to cover return postage costs and to save the other operator the time of writing my address on an envelope. Remember, most active stations get many such requests and most people don’t have unlimited time for this hobby. When sending QSLs to other countries there are a few options on how to pay for return postage. In the past the International Reply Coupon (IRC) was a popular choice. An IRC could be sent with the QSL and in most countries that IRC could be exchanged for the correct amount of postage to return one piece of first class mail to the country of origin. The IRC has diminished greatly in popularity (some would say it has become all but unusable), because the USPS no longer sells them and because many countries no longer accept them. The most popular method today is to send US one dollar bills to pay for return postage. In ham radio QSL parlance we call them green stamps. They can be exchanged for local currency in most countries, but do your homework before sending them! In a few countries, one can get into a lot of trouble for the mere possession of US currency! I do not know where to find a comprehensive list of such places, but keep reading for tips how to know what to send or not send. Be aware that $1 is not enough to cover the cost of returning a card from most countries, just as it now costs over $1 to buy a stamp to mail something out of the US. $2 may still be enough in some countries but many require $3 and I believe some are now $4. Obviously this gets expensive – at current rates, $1.20 for the stamp to mail something out, $3 to cover the cost of getting a reply. Another method that is gaining in popularity is to send stamps from the DX operator’s own country along with your QSL. There is at least one service (William Plum DX Supplies) making such stamps available to hams.

Recognizing the high cost of exchanging QSLs, many countries participate in a network of QSL bureaus. Here is how this works. If I contact many DX stations whose QSLs I want, I can fill out all of the QSLs, sort them by country of destination, and along with a modest fee send them to the American Radio Relay League (ARRL) Outgoing QSL Bureau. The bureau will then combine my outgoing cards with those of many other US hams and send them in batches to QSL bureaus in other countries for distribution to hams in each country. Incoming QSLs through the system are handled by a number of regional bureaus across the country. In order to receive incoming QSLs through the bureau system, I periodically send money to the W1 QSL Bureau. They receive thousands of QSLs destined for US hams in the first call area (W1), which comprises the six New England states. They get these cards from bureaus around the world. The incoming QSLs are sorted by destination station, and when they have accumulated a reasonable number that are going to my station or a certain amount of time has passed since their last mailing to me, they mail them to me (using some of the postage credit on my account). Exchanging QSLs through the bureau system is much cheaper than going direct, but it takes more time. The amount of time required to get a QSL card this way can be months or even years. Bear in mind not all countries have a QSL bureau, and not all hams in any given country use the bureau if it has one. Many hams use the bureau to obtain QSLs they would like to have, but are in no hurry for. Note that the ARRL bureau is for sending cards to other countries and cannot be used for sending cards to other US stations.

Some hams, particularly those in rare or semi-rare countries, have a QSL manager. This is a person who handles the chore of responding to QSL requests f0r the ham, who may not have enough time to do it. In some cases, hams have QSL managers because delivery of mail in their country is not entirely reliable. The QSL manager may or may not live in the same country as the ham using his services. Sometimes you get lucky and the ham you just worked in that rare country has a QSL manager in the US! This is great, as it costs you less and you usually get your wanted QSL card in less time.

So how you do you know where to send your QSL for that DX station you just worked? You need to look it up. I usually start with QRZ.com. If the DX station has a listing there, it will likely tell you how to QSL that station, be it direct, via bureau or via a manager. Often it will tell you what methods are accepted for return postage and what not to send. Not all stations are listed on QRZ.com. For those you need to look further. There are DX newsletters to which you can subscribe which often give QSL information for rare stations and DXpeditions. Some of them have back issues available online. Sites such as DXNews.com and DXcoffee.com can be valuable resources for finding QSL information. A good source for DXpedition QSL info is ng3k.com, particulary his ADXO (Announced DX Operations) pages. In short, the avid DXer with an interest in QSL cards needs to have a variety of resources from which to gather information.

When sending cards to other countries, there are a few things to keep in mind. Mail isn’t as safe in many places as it is in the US. Putting callsigns on the envelope suggests that it may contain a QSL and some US $1 bills – which may then get stolen! The best advice is don’t put callsigns on the envelope, just names and addresses (that of the station you are sending it to and your return address, of course). Try to hide what is inside so it can’t be clearly seen if the envelope is held up to a bright light. You may want to use security envelopes or wrap a couple sheets of paper around your QSL and funds for return postage before placing it in the envelope. Whatever you do, write clearly and legibly when filling out your QSL card and addressing the envelope. Remember this may be going to, or through, places where English is not the primary language and even to places that use a totally different alphabet! Don’t expect them to decipher a scribbled address. Sending a self addressed envelope for the return QSL may save the other operator some time in replying, but US sized envelopes are not acceptable in all countries. William Plum DX Supplies sells envelopes specifically for this purpose.

With postage costs escalating and in view of the fact many only want QSL cards for contact verification in applying for awards (as opposed to collecting the cards themselves), modern technology has provided an alternative: electronic QSLing. There are two major services in operation today: eQSL and ARRL’s Logbook of The World (LoTW). Each has its advantages and disadvantages, which should be considered in selecting which service(s) to use.

LoTW confirmations are currently good for ARRL awards (WAS, DXCC, VUCC) and the CQ WPX award – but not for others. There is no cost to sign up and participate in LoTW but there is a nominal fee of 12 cents per QSL for any you decide to use for awards applications. The LoTW sign up process has drawn heavy criticism on grounds that it is too difficult. Paperwork is often challenging for me but I didn’t find anything difficult about the LoTW sign up process, and the documentation leads you through it step by step. The registration process is designed to avoid fraud so that some integrity may remain in the awards system. It is not an “instant gratification” process. It takes about a week since it does involve a postcard through the US mail for one part of it. You only have to go through this process once. Once you are signed up, using LoTW is usually very easy. Most hams today log all of the contacts they make using one of several different logging programs that are available. Major logging programs automate the process of uploading contacts to LoTW. With the one I use (DXKeeper) it is as easy as a click or two. There is no printable “QSL card” with a LoTW contact verification. It is strictly an electronic acknowledgement that the contact is confirmed.

The other major online QSL system, eQSL, has a somewhat easier registration process. Confirmations through eQSL count for CQ awards and perhaps others, but cannot be used to apply for ARRL awards. eQSL allows each station to design their own electronic QSL “card”, and receiving stations can print out and keep a copy for each contact confirmed through the system. Most major logging programs automate the process of uploading contacts to eQSL.

It is important to choose which service(s) best meet your objectives. My main awards focus is DXCC and I like contesting. I use LoTW because confirmations there can be used for the DXCC awards and because uploading all of my QSOs there greatly reduces the number of QSL card requests I get through the mail. Otherwise I would be overwhelmed due to the number of contacts I make while contesting. By the way, award application fees are often less for electronic applications than for paper ones which require more processing on the part of the organization issuing the award. I send for paper QSL cards when I work stations needed for DXCC who do not use LoTW. I also like to get paper QSLs for major DXpeditions even if they use LoTW (most do), because often those QSLs are something extra special with pictures of the rare and exotic places and once in a lifetime adventures. Some are multi-sided fold-out cards or even small booklets with pictures and story of a great DX adventure.

QSL cards from rare locations and DXpeditions. Top left: a bi-fold QSL card from a base in Antarctica. Top right: front of a QSL from 3Y0X Peter I Island DXpedition. Second row: middle of fold-out 3Y0X QSL. Third row: Bi-fold card from BS7H Scarborough Reef DXpedition. Bottom: middle of a 32 page QSL card “booklet” telling the story of the VP6DX Ducie Island Dxpedition.

One other method deserves mention. A system called Online QSL Request System (OQRS) is becoming quite popular, especially for DXpeditions. A DXpedition is by definition a temporary ham radio operation from some rare and often remote place. The person or people who went on a DXpedition does not need your QSL card, but very likely you need theirs. Many of them now post their logs online and offer OQRS through various systems. The way this works is you go to their onling log site, enter your callsign and it will show you all contacts you made with that DXpedition. It will then offer you a chance to “order” QSLs for some or all of those contacts. You may have to fill in the details such as date and time for each QSO. Usually there is a nominal fee involved. It may seem high but bear in mind this is one way of helping to pay for a trip that was done for your benefit and likely cost in the hundreds of thousands of dollars! The advantage for you is that you usually get your card(s) much quicker than any other method. Many DXpeditions now use Club Log for their online log and OQRS. Any station can upload logs to Clug Log. If you participate, this makes OQRS even easier. Since Club Log has both the DXpedition log and your log, it already knows all details of the matching QSOs! All you have to do is select the ones you want QSLs for and complete the transaction by making payment. For those like me who hate paperwork, this is the ultimate in simplicity and convenience on getting those rare DXpdition QSLs. I used Club Log OQRS for my recent contacts with K5P (Palmyra), VP8STI (South Sandwich), and VP8SGI (South Georgia).

You have a number of choices when having QSL cards printed for your station. Many printing services offer generic card designs customized with your callsign, name, and location. Others will design a card from your photo or artwork, or you can do all the design work yourself and just have them print a batch of cards. I designed my QSL card myself and submitted it to UX5UO Print. For less than $100 I got 1,000 full color double sided cards featuring photos from a hiking trip to Mount Katahdin. Cards can be ordered from many printers in smaller quantity, and generic designs are cheaper than color photo cards. Of course you can design and print your own if you want. QSL cards don’t have to be fancy. In fact, some are very basic but still do the job of confirming QSOs. Because the people you contact will be wanting your card for a variety of purposes, I suggest you put the following on your card as a minimum: your callsign, name, and mailing address; state and country (if not obvious from the address), county, CQ zone, ITU zone, and grid square. Additional information may apply in some cases. If you live on an island which counts for Islands on the Air (IOTA), for example, you might want to put its IOTA number on your card.

Examples of basic QSL cards. Top: Single color, two sided card (reverse not shown). Bottom left: Single color single sided card. Bottom right: two color single sided card.

Mowable Temporary Cables

What? Mowable cables? That doesn’t make any sense! Let me explain. Throughout my nearly four decades exploring radio, I have often had occasion to run a “temporary” cable to some antenna. Usually these end up laying on the ground where they quickly become a nuisance, having to be moved every time the grass needs to be cut. This often continues for some time. After all, in a ham radio sense the definition of temporary is “anything expected to be in service for less than the life expectancy of the operator”. About year ago I had a sudden explosion of “temporary” cables. I needed to run coax and a variometer control cable to my new 2200 and 630 meter transmitting antenna, as well as coax to a receiving antenna for those bands in another location. These were put down just after the last lawn mowing of the season, but were at risk of damage from the snowblower as I kept a path cleared to the transmitting antenna during the winter. This summer they have been a constant source of irritation as I had to move them every time I mowed the grass.

Since I still can’t afford good coax and conduit to do this job in a permanent (meaning less irritating) fashion, something had to be done. One obvious solution is to dig a shallow trench and lay the cable in it — with our without burying afterward. This tends to be a lot of work and it’s messy, disturbing the grass (uh, I mean the weeds) and leaving dirt strewn all over. I was looking for a cleaner and, hopefully, easier method. One morning about 2 AM it came to me. I sat bolt upright in bed, sending Boo (the cat, who had been asleep on my chest) fleeing for cover. Who said you had to dig a trench? I have soft, sandy soil. Surely one could press a trench into the ground without the mess. It just might be easier, too. The following series of pictures depict the process, which worked very well.

Step One: Mark a line. Drive in stakes at each end and at any locations along the run where a bend is required. Run string (or small wire) from end to end, then spray paint a line on the ground along it.

Details of the string (wire) and painted line at a bend point.

Step Two: Hammer a slot into the ground. I used an 8″ x 8″ dirt tamper and a 10″ length of 1.6″ OD steel pipe. Lay the pipe on the painted line and hammer it in until its top is flush with the surface of the soil. In my soil this takes two to three blows, and the flat plate of the tamper makes it easy to know when you’ve reached the correct depth. This photo shows the pipe in place before being driven into the soil.

Here is a photo showing results after the pipe has been driven flush with the soil. To continue I simply pull out the pipe and move it forward 9 inches (just a bit less than the length of the pipe), then drive it into the soil again. The process moves along quite quickly.

Step Three: Lay the cable into the trench. I make 15 to 20 feet of trench at a time, then lay cable into it, then do another section of trench.

The completed job. There is no messy strewing of dirt, the paint line has virtually vanished, and the cable can barely be seen if one is not standing very close to it or directly in line with it. The top o of the cable is 3/4″ to 1″ below grade, so it is out of danger from the mower. Of course it is still subject to damage from any number of things, but with temporary cable runs that is usually a fact of life.

First USA to Europe Amateur Radio 2200 Meter QSO

It was early morning on the 28th day of March, 2018. Most people were sound asleep but not me. I was in my ham shack, hands trembling, heart pounding as I typed a few letters and numbers into my logging program. I could barely breathe. I had just completed one of the most exciting QSOs of my nearly four decades chasing DX. This single QSO cost more money and time than any other I had ever made. It was a QSO with England. You may wonder what is so exciting about that when any ham with five watts and a piece of wire can contact England from Maine. Well, this was special because we did it on the 2200 meter band. It was the first amateur radio USA to Europe QSO on what is, for us, a new band. This was no easy feat. It required months of station building and four nights just to complete the QSO. Some would call it a ridiculous folly and see no sense at all in it. But to me this is the true spirit of amateur radio, finding a way to communicate against the odds, adapting equipment and technique to accomplish the desired result. It is man and his machine against nature, determined to succeed under the most difficult circumstances.

The 2200 meter band allocation is 135.7 to 137.8 kilohertz in the long wave part of the radio spectrum known as LF or low frequency. In some ways this goes back to amateur radio’s early roots on 1750 meters, but it had been more than 100 years since U.S. amateurs were allowed to transmit in this part of the radio spectrum. These frequencies are not easy! Normal size antennas would be huge. A half wave dipole would be 3400 feet long; a quarter wave vertical towering to a height of 1700 feet. Natural and man made noise tend to be very high in this part of the radio spectrum and ionospheric propagation is feeble compared to the short waves. On top of that, we are only permitted to run one watt effective isotropic radiated power (EIRP). That is flea power compared to what we can use on most any of our higher frequency allocations! By comparison, when I was doing EME (moonbounce) on the two meter band I was legally running about 450,000 watts EIRP. But ham radio DXers who like a good challenge can be a very determined lot. The greater the challenge, the greater the reward.

I became interested in 2200 meters in late 2016 after the local club asked me to prepare a report on this and the 630 meter band, which were expected to soon be opened for amateur radio use in the U.S. At that time the only way to legally transmit on either band was to get a Part 5 FCC license under the experimental radio service. One could almost write one’s own ticket on power limits and frequency allocations but this wasn’t amateur radio. I did apply for and was granted a Part 5 license but never used it since FCC opened these new bands to amateurs just as I was getting a station put together. I found receiving on 630 meters to be relatively easy, if somewhat plagued by noise and available antennas. But 2200 meters was a very different thing. It took weeks of experimentation and testing to detect the first trace of signal on this band. Many weeks later after more trial and error I was rewarded with my first reception of a ham radio signal from Europe on the band when DC0DX appeared in my WSPR decodes. I confess it was then that I first started to dream of someday making a two way QSO across the Atlantic on long wave.

I thought I had plenty of time to build a station, since the FCC process on opening these bands had been dragging on for years. But in the Spring of 2017 the announcement came that we would get these new bands in a few months! Now the race was on. I frantically began building transmitting apparatus. I didn’t quite make it for opening day in October but I was on the band a few weeks later. Early amplifiers were plagued by budget shortfalls and poor performance. By mid February, 2018 I had managed to achieve 0.5 watt EIRP, just three decibels below the legal limit. The flood gates opened and to my amazement I started receiving numerous WSPR decodes from European stations. Wow!

I believed a two way trans-Atlantic QSO was in my future but was not sure when. I was eager for an attempt but still very much struggling with equipment and budget. I was hearing stations from Europe. Stations from Europe were hearing me. But for the most part, those who heard me did not have transmitting capability or not sufficient to reach across the Atlantic. The best bet would seem to be 2E0ILY. We had conducted tests earlier in the season and I could often copy his JT9 beacon. Chris could occasionally copy my WSPR signal but not at sufficient strength for JT9 to be viable. I knew there were ways to get it done, but this would take several nights. I was hesitant to ask anyone to commit such effort and time to a QSO.

As the relatively quiet season was drawing to an end I realized another season is never guaranteed for any number of reasons. I had given the matter considerable thought. There were no practical digital modes which would work with the low signal levels involved. Two old school modes came to mind: QRSS and DFCW. Both are very slow, trading time for weak signal detection capability. QRSS is extremely slow CW, so slow in fact that it can only be copied by reading it off a computer screen. In this case, a speed of QRSS60 would be best, meaning that each dot would be 60 seconds in duration. A dash is three times as long, just as in normal CW. This mode requires nothing special for equipment, as it uses on/off keying of a carrier and is fairly tolerant of frequency drift. But, the shortest element, the dot, sets the achievable signal to noise ratio. There is no advantage gained from the dashes being three times as long, so it is essentially time wasted. Time is valuable, as signal fading means you have a limited amount of time to copy the message. DFCW, or dual frequency CW is an offshoot of QRSS in which dots and dashes are the same length but sent on slightly different frequencies so that one may be differentiated from the other. This saves considerable time with no reduction in signal to noise ratio but requires more complex transmitter keying and reasonably tight frequency stability. In a typical DFCW60 transmission, the dot to dash frequency shift is a small fraction of a hertz. Transmitter and receiver drift must be held to less than this in order to avoid dot-dash ambiguity at the receiving end. It would take about an hour to send two call signs at DFCW60 speed. It was now late March. Clearly there would not be enough common darkness between Maine and any part of Europe to allow a QSO to be completed in a single night at this speed.

It may be useful to consider what is a QSO. These days the term means different things to different people. I came up through the DXing ranks with what is now a somewhat old school definition for a minimum acceptable information exchange to claim a QSO under very weak signal conditions. I still firmly believe in the old way, as we are after all supposed to be communicators. That definition is that each station must receive from the other both call signs, signal report or other piece of information, and acknowledgment. This requires that two transmissions be copied in each direction. Anything less than that does not seem like communication to me, and leaves me with no sense of accomplishment.

It seemed the best way to go about it would be to borrow operating and reporting techniques from EME, modifying procedure slightly to account for the much longer period of time required to send a message on the long waves. In this procedure, the letter O would be used as a signal report to indicate full call signs had been copied; R and O would be used to indicate full call signs plus signal report had been copied; R by itself to indicate call signs, report, and R (as part of R and O) had been copied. As for timing, it seemed sensible to use night by night sequencing. That meant the two stations would take turns transmitting, one going the first night the other the second, alternating back and forth throughout the QSO. It would take a minimum of four nights to complete a QSO, assuming the full message could be copied each night. If it wasn’t, additional nights would be required for repeats. That’s really slow! But it did offer some advantages with the equipment available. In order to achieve the required frequency stability I would have to use my QRP Labs Ultimate 3S beacon transmitter. The U3S is a great piece of gear, but editing messages is tedious. Night by night sequencing would give me all day to change the message for the next night’s transmission! A complete QSO would look like this, where bold indicates my transmissions, italics indicate transmissions from the other station:

2E0ILY N1BUG
N1BUG 2E0ILY O
RO
R

Meaning of the first line is obvious. I am transmitting both call signs. In the second line my QSO partner adds the signal report, O, to let me know he had copied both call signs fully. In the third line I send RO which means I have copied call signs and my report, your report is O. In the last line my QSO partner sends R, meaning I have copied all on my end. When I copy the R the QSO is complete. If a message is not copied, or not enough information is copied, then one continues to transmit the previous message until getting something back which advances the QSO.

I had worked out a viable technique. Now I just needed a QSO partner. Just in time I worked up the courage to ask Chris, 2E0ILY if he would be willing to give it a try. I was very happy when he said he’d have a go at it.

We had decided I would transmit the first night, so I set the U3S to send ‘2E0ILY N1BUG’ over and over during the hours of common darkness between our respective locations. It turned out to be an ugly night in terms of weather. I was getting heavy wet snow squalls. Nothing causes a 2200 meter Marconi antenna (vertical) to go out of resonance any quicker than wet snow! These antennas are electrically short and require huge loading coils to resonate them. They are high impedance antennas and the bandwidth is very narrow. These antennas are prone to changing characteristics on a whim. Every time the snow started, stopped, changed intensity or the amount of snow clinging to the antenna changed, the thing went wandering up or down the band and required retuning for resonance on the operating frequency. Fortunately the variometer at the antenna base was motorized and I could adjust it from the comfort of my transmitter room. But I had to keep a constant vigil, watching antenna resonance and adjusting as needed. I had my finger on the switch for variometer adjustment far more than not. After a while my fingers were getting sore from constantly manipulating the tuning switch. Perhaps I shouldn’t have used a miniature toggle switch there. If you think this was an automated QSO without operator involvement, think again! My presence and diligence at the controls was absolutely vital that night!

Message copied from 2E0ILY on the second night of the QSO (annotated). Note dots on the lower frequency, dashes shifted 0.187 Hz higher. When the signal is this strong, elements tend to bleed together a little but since they are of fixed length it is still very readable.

The next night it was my turn to listen. Due to the extremely slow speed DFCW is copied visually  using software designed for this purpose. Anxiously I stared at the screen. When I wasn’t nervously pacing, that is! I began to see traces of signal, then an odd letter here and there. There was a B, a 2, a Y and I even thought I saw an O but couldn’t be sure. Eventually conditions stabilized and I began to get steady print on the screen. Waiting 60 seconds for a dot or dash to fully paint on the screen can be agonizing. Slowly the elements accumulate and become characters. If you are lucky, propagation holds up long enough to copy the full message. Fortunately, after somewhat of a slow start copy remained solid and I eventually had N1BUG, 2E0ILY and a very nice O painted on my screen! I had copied full call signs and a signal report indicating Chris had got full call signs from me the previous night! We were half way there!

The third night I was transmitting again. Since I knew Chris had already copied full call signs from me, it was not necessary to transmit them at this stage of the QSO. Technically I could have just sent RO repeating throughout the night, but being of the cautious type I decided to include call sign suffixes to provide positive evidence the correct station was being copied. Thus the message I transmitted was ‘ILY BUG RO’. This was a risk as it takes far longer to send than simply ‘RO’ and signal fading can be a huge factor. At least the weather was better and I didn’t have to ride the variometer all night.

Soon it was night four, back to pacing and staring hopefully at the screen. I was especially nervous that night, as I had some strong, drifting interference right on top of Chris! Finally it moved just enough that I could make out ‘BUG ILY R’. There was rapid fading and the dash in the R was much fainter than the rest. Fainter but unmistakably there. I was positive about the R but being the cautious type and realizing this QSO would be an amateur radio first I really wanted to see it more clearly before declaring the QSO complete. The signal faded and nothing was seen for hours. Sunrise at 2E0ILY was fast approaching and I had to make a decision. Was I going to log the QSO or retransmit my RO message the following night in hope of getting better copy of the R on night six? Just before dawn the signal reappeared, very weak. I could barely make out ‘BUG IL’, then the ‘Y’ was quite strong. Given the proximity to sunrise every minute felt like an eternity. Ticking of the clock became offensively loud. It was going to take another four minutes to get an R! Would it hold up that long? Slowly, as the clock ticked and my heart raced, a crystal clear ‘R’ painted on the screen. There were traces of signal for some time after that but nothing  I would call readable, save a stray ‘Y’ that somehow came through well past dawn. So it came to be that shortly after 0600 UTC (1:00 AM local time) on this, the 28th day of March, 2018 I entered this QSO into my station log. We had done it!

QSL card received for this very memorable QSO!

This was an amateur radio first from the U.S. but nothing new in terms of distance on the 2200 meter band. Canadian stations, operating under amateur call signs but otherwise a program similar to our Part 5 licenses, had worked Europe years earlier. Much longer distances had been covered. But for me this was one of the most exciting QSOs of my nearly 40 years as a DXer. It ranks right up there with my first EME QSO, the QSO that put me on the DXCC Honor Roll and several other notable events such as being credited with the first North American two meter auroral E QSO back in 1989. My thanks to Chris, 2E0ILY for his time and patience to make this happen – not to mention the kilowatt hours of electricity expended.

DFCW may be old school but it gets the job done under extremely difficult conditions. DFCW ‘decoding’ is done by the human operator. Deciding what has been copied is not left to computer software which may use assumption or non amateur radio means to fill in things it couldn’t positively make out over the air. DFCW is painfully slow but here we had a very positive over the air exchange of full call signs, reports and acknowledgement without any shortcuts or fudging. I was very pleased with that!

Although this single QSO cost more than any other, this was a low budget operation. Most of the LF station consists of low cost kits and home built gear. Equipment used at my station for this QSO was the QRP Labs Ultimate 3S driving a home built amplifier to 175 watts output. The transmitting antenna was a 90 foot Marconi (vertical) with a top hat consisting of three wires each 100 feet long, spaced five feet apart. Three one inch diameter aluminum spreaders plus triangular wire sections at each end are electrically part of the top loading. This is resonated at the base with an inductance of approximately 2.3 millihenries. Loss resistance at the time was near 100 ohms, resulting in EIRP of 0.5 watt. For receive I used a 30 foot low noise vertical, band pass filter, W1VD preamp, and a modified Softrock Lite II SDR receiver. The amplifier and most of the receive system has been described on my blog and/or web site. There are photos of the antenna and variometer on my web site.